論文の概要: From Measurement to Mitigation: Exploring the Transferability of Debiasing Approaches to Gender Bias in Maltese Language Models
- arxiv url: http://arxiv.org/abs/2507.03142v1
- Date: Thu, 03 Jul 2025 19:45:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.591557
- Title: From Measurement to Mitigation: Exploring the Transferability of Debiasing Approaches to Gender Bias in Maltese Language Models
- Title(参考訳): 測定から緩和へ:マルタ語モデルにおける性バイアスへの脱バイアスアプローチの伝達可能性を探る
- Authors: Melanie Galea, Claudia Borg,
- Abstract要約: 本研究では,マルタ語モデルへのデバイアス法の適用可能性について検討する。
我々は、CrowS-PairsやSEATといったベンチマークと、デバイアス法、デファクトデータ拡張、ドロップアウト正規化、オートデバイアス、GuiDebiasといったデバイアス手法を用いています。
本研究は,既存のバイアス緩和手法を言語学的に複雑な言語に適用する上での課題を浮き彫りにした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The advancement of Large Language Models (LLMs) has transformed Natural Language Processing (NLP), enabling performance across diverse tasks with little task-specific training. However, LLMs remain susceptible to social biases, particularly reflecting harmful stereotypes from training data, which can disproportionately affect marginalised communities. We measure gender bias in Maltese LMs, arguing that such bias is harmful as it reinforces societal stereotypes and fails to account for gender diversity, which is especially problematic in gendered, low-resource languages. While bias evaluation and mitigation efforts have progressed for English-centric models, research on low-resourced and morphologically rich languages remains limited. This research investigates the transferability of debiasing methods to Maltese language models, focusing on BERTu and mBERTu, BERT-based monolingual and multilingual models respectively. Bias measurement and mitigation techniques from English are adapted to Maltese, using benchmarks such as CrowS-Pairs and SEAT, alongside debiasing methods Counterfactual Data Augmentation, Dropout Regularization, Auto-Debias, and GuiDebias. We also contribute to future work in the study of gender bias in Maltese by creating evaluation datasets. Our findings highlight the challenges of applying existing bias mitigation methods to linguistically complex languages, underscoring the need for more inclusive approaches in the development of multilingual NLP.
- Abstract(参考訳): LLM(Large Language Models)の進歩は自然言語処理(NLP)を変革し、タスク固有のトレーニングをほとんど行わずに様々なタスクにまたがるパフォーマンスを実現した。
しかし、LSMは社会的偏見の影響を受けにくく、特に訓練データから有害なステレオタイプを反映している。
我々は、マルタのLMにおける性別バイアスを測定し、このようなバイアスは社会的ステレオタイプを強化し、性別の多様性を考慮できないため有害であると主張した。
偏見評価と緩和努力は英語中心のモデルでは進んでいるが、低資源で形態的に豊かな言語の研究は依然として限られている。
そこで本研究では, BERTu と mBERTu, BERT をベースとした単言語モデルと多言語モデルに着目し, デバイアス化手法のマルタ語モデルへの変換可能性について検討した。
CrowS-Pairs(英語版)やSEAT(英語版)などのベンチマークとデバイアス法(英語版)、Dropout Regularization(英語版)、Auto-Debias(英語版)、GuiDebias(英語版)といった、英語からのバイアス測定と緩和技術がマルタに適応している。
また、評価データセットを作成することで、マルタにおけるジェンダーバイアスの研究に貢献する。
本研究は,言語学的に複雑な言語に既存のバイアス緩和手法を適用することの課題を強調し,多言語NLPの開発における包括的アプローチの必要性を浮き彫りにした。
関連論文リスト
- GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
大規模言語モデル(LLM)は、自然言語生成において顕著な能力を示してきたが、社会的バイアスを増大させることも観察されている。
GenderCAREは、革新的な基準、バイアス評価、リダクションテクニック、評価メトリクスを含む包括的なフレームワークである。
論文 参考訳(メタデータ) (2024-08-22T15:35:46Z) - REFINE-LM: Mitigating Language Model Stereotypes via Reinforcement Learning [18.064064773660174]
本稿では、強化学習を用いて様々なバイアスを微調整せずに処理する脱バイアス法REFINE-LMを紹介する。
LMの単語確率分布の上に簡単なモデルをトレーニングすることにより、バイアス強化学習法により、人間のアノテーションを使わずにモデルの偏りを抑えることができる。
複数のLMを含む多種多様なモデルで行った実験により,本手法は,LMの性能を維持しながら,ステレオタイプバイアスを著しく低減することを示した。
論文 参考訳(メタデータ) (2024-08-18T14:08:31Z) - Leveraging Large Language Models to Measure Gender Representation Bias in Gendered Language Corpora [9.959039325564744]
大規模言語モデル(LLM)は、しばしば、トレーニングデータに埋め込まれた社会的バイアスを継承し、増幅する。
性バイアスとは、特定の役割や特性と特定の性別の関連性である。
ジェンダー表現バイアスは、性別の異なる個人への参照の不平等な頻度である。
論文 参考訳(メタデータ) (2024-06-19T16:30:58Z) - What is Your Favorite Gender, MLM? Gender Bias Evaluation in Multilingual Masked Language Models [8.618945530676614]
本稿では,中国語,英語,ドイツ語,ポルトガル語,スペイン語の5言語から,多言語辞書の性別バイアスを推定する手法を提案する。
ジェンダーバイアスのより堅牢な分析のための文対を生成するために,新しいモデルに基づく手法を提案する。
以上の結果から,複数の評価指標をベストプラクティスとして用いた大規模データセットでは,性別バイアスを研究すべきであることが示唆された。
論文 参考訳(メタデータ) (2024-04-09T21:12:08Z) - In-Contextual Gender Bias Suppression for Large Language Models [47.246504807946884]
大きな言語モデル (LLM) は、性バイアスの心配レベルをエンコードしていると報告されている。
手動で設計したテンプレートから構築したプリアンブルを提供することにより,LLMのバイアス発生を防止するバイアス抑制を提案する。
その結果,HellaSwag と COPA による下流タスク性能にバイアス抑制が悪影響があることが判明した。
論文 参考訳(メタデータ) (2023-09-13T18:39:08Z) - On Evaluating and Mitigating Gender Biases in Multilingual Settings [5.248564173595024]
複数言語設定におけるバイアスの評価と緩和に関する課題について検討する。
まず,事前学習したマスキング言語モデルにおいて,性別バイアスを評価するベンチマークを作成する。
我々は、様々なデバイアス法を英語以上に拡張し、SOTAの大規模多言語モデルの有効性を評価する。
論文 参考訳(メタデータ) (2023-07-04T06:23:04Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - An Analysis of Social Biases Present in BERT Variants Across Multiple
Languages [0.0]
多様な言語からなる単言語BERTモデルにおけるバイアスについて検討する。
文の擬似類似度に基づいて,任意のバイアスを測定するテンプレートベースの手法を提案する。
偏見探索の現在の手法は言語に依存していると結論付けている。
論文 参考訳(メタデータ) (2022-11-25T23:38:08Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
大規模事前訓練言語モデル(LM)は、望ましくない表現バイアスを示すのに潜在的に危険である。
テキスト生成における社会的バイアスを軽減するためのステップを提案する。
我々の経験的結果と人的評価は、重要な文脈情報を保持しながらバイアスを緩和する効果を示す。
論文 参考訳(メタデータ) (2021-06-24T17:52:43Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
多言語埋め込みにおけるジェンダーバイアスとNLPアプリケーションの伝達学習への影響について検討する。
我々は、バイアス分析のための多言語データセットを作成し、多言語表現におけるバイアスの定量化方法をいくつか提案する。
論文 参考訳(メタデータ) (2020-05-02T04:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。