Neural Substitute Solver for Efficient Edge Inference of Power Electronic Hybrid Dynamics
- URL: http://arxiv.org/abs/2507.03144v1
- Date: Thu, 03 Jul 2025 19:52:32 GMT
- Title: Neural Substitute Solver for Efficient Edge Inference of Power Electronic Hybrid Dynamics
- Authors: Jialin Zheng, Haoyu Wang, Yangbin Zeng, Han Xu, Di Mou, Hong Li, Sergio Vazquez, Leopoldo G. Franquelo,
- Abstract summary: How-ever, efficiently inferring the inherent hybrid continu-ous-discrete dynamics on resource-constrained edge hardware remains a significant challenge.<n>This letter pro-poses a neural substitute solver (NSS) approach, which is a neural-network-based framework aimed at rapid accurate inference with significantly reduced computational costs.
- Score: 6.708926878153465
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Advancing the dynamics inference of power electronic systems (PES) to the real-time edge-side holds transform-ative potential for testing, control, and monitoring. How-ever, efficiently inferring the inherent hybrid continu-ous-discrete dynamics on resource-constrained edge hardware remains a significant challenge. This letter pro-poses a neural substitute solver (NSS) approach, which is a neural-network-based framework aimed at rapid accurate inference with significantly reduced computational costs. Specifically, NSS leverages lightweight neural networks to substitute time-consuming matrix operation and high-order numerical integration steps in traditional solvers, which transforms sequential bottlenecks into highly parallel operation suitable for edge hardware. Experimental vali-dation on a multi-stage DC-DC converter demonstrates that NSS achieves 23x speedup and 60% hardware resource reduction compared to traditional solvers, paving the way for deploying edge inference of high-fidelity PES dynamics.
Related papers
- Physics-Embedded Neural ODEs for Sim2Real Edge Digital Twins of Hybrid Power Electronics Systems [6.073480880825787]
Edge Digital Twins (EDTs) are crucial for monitoring and control of Power Electronics Systems (PES)<n>Existing modeling approaches struggle to consistently capture continuously evolving hybrid dynamics that are inherent in PES.<n>This paper proposes a Physics-Embedded Neural ODEs (PENODE) that embeds the hybrid operating mechanism as an event automaton to explicitly govern switching discrete.
arXiv Detail & Related papers (2025-08-04T20:34:13Z) - Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.<n>A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.<n>The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Neuroevolving Electronic Dynamical Networks [0.0]
Neuroevolution is a method of applying an evolutionary algorithm to refine the performance of artificial neural networks through natural selection.
Fitness evaluation of continuous time recurrent neural networks (CTRNNs) can be time-consuming and computationally expensive.
Field programmable gate arrays (FPGAs) have emerged as an increasingly popular solution, due to their high performance and low power consumption.
arXiv Detail & Related papers (2024-04-06T10:54:35Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Gradient-descent hardware-aware training and deployment for mixed-signal
Neuromorphic processors [2.812395851874055]
Mixed-signal neuromorphic processors provide extremely low-power operation for edge inference workloads.
We demonstrate a novel methodology for ofDine training and deployment of spiking neural networks (SNNs) to the mixed-signal neuromorphic processor DYNAP-SE2.
arXiv Detail & Related papers (2023-03-14T08:56:54Z) - Energy Efficient Hardware Acceleration of Neural Networks with
Power-of-Two Quantisation [0.0]
We show that a hardware neural network accelerator with PoT weights implemented on the Zynq UltraScale + MPSoC ZCU104 FPGA can be at least $1.4x$ more energy efficient than the uniform quantisation version.
arXiv Detail & Related papers (2022-09-30T06:33:40Z) - Stabilizing Voltage in Power Distribution Networks via Multi-Agent
Reinforcement Learning with Transformer [128.19212716007794]
We propose a Transformer-based Multi-Agent Actor-Critic framework (T-MAAC) to stabilize voltage in power distribution networks.
In addition, we adopt a novel auxiliary-task training process tailored to the voltage control task, which improves the sample efficiency.
arXiv Detail & Related papers (2022-06-08T07:48:42Z) - Dynamic Slimmable Network [105.74546828182834]
We develop a dynamic network slimming regime named Dynamic Slimmable Network (DS-Net)
Our DS-Net is empowered with the ability of dynamic inference by the proposed double-headed dynamic gate.
It consistently outperforms its static counterparts as well as state-of-the-art static and dynamic model compression methods.
arXiv Detail & Related papers (2021-03-24T15:25:20Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
Transformer-based language models such as BERT provide significant accuracy improvement for a multitude of natural language processing (NLP) tasks.
We present EdgeBERT, an in-depth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP.
arXiv Detail & Related papers (2020-11-28T19:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.