Physics-Embedded Neural ODEs for Sim2Real Edge Digital Twins of Hybrid Power Electronics Systems
- URL: http://arxiv.org/abs/2508.02887v1
- Date: Mon, 04 Aug 2025 20:34:13 GMT
- Title: Physics-Embedded Neural ODEs for Sim2Real Edge Digital Twins of Hybrid Power Electronics Systems
- Authors: Jialin Zheng, Haoyu Wang, Yangbin Zeng, Di Mou, Xin Zhang, Hong Li, Sergio Vazquez, Leopoldo G. Franquelo,
- Abstract summary: Edge Digital Twins (EDTs) are crucial for monitoring and control of Power Electronics Systems (PES)<n>Existing modeling approaches struggle to consistently capture continuously evolving hybrid dynamics that are inherent in PES.<n>This paper proposes a Physics-Embedded Neural ODEs (PENODE) that embeds the hybrid operating mechanism as an event automaton to explicitly govern switching discrete.
- Score: 6.073480880825787
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Edge Digital Twins (EDTs) are crucial for monitoring and control of Power Electronics Systems (PES). However, existing modeling approaches struggle to consistently capture continuously evolving hybrid dynamics that are inherent in PES, degrading Sim-to-Real generalization on resource-constrained edge devices. To address these challenges, this paper proposes a Physics-Embedded Neural ODEs (PENODE) that (i) embeds the hybrid operating mechanism as an event automaton to explicitly govern discrete switching and (ii) injects known governing ODE components directly into the neural parameterization of unmodeled dynamics. This unified design yields a differentiable end-to-end trainable architecture that preserves physical interpretability while reducing redundancy, and it supports a cloud-to-edge toolchain for efficient FPGA deployment. Experimental results demonstrate that PENODE achieves significantly higher accuracy in benchmarks in white-box, gray-box, and black-box scenarios, with a 75% reduction in neuron count, validating that the proposed PENODE maintains physical interpretability, efficient edge deployment, and real-time control enhancement.
Related papers
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
We introduce LangevinFlow, a sequential Variational Auto-Encoder where the time evolution of latent variables is governed by the underdamped Langevin equation.<n>Our approach incorporates physical priors -- such as inertia, damping, a learned potential function, and forces -- to represent both autonomous and non-autonomous processes in neural systems.<n>Our method outperforms state-of-the-art baselines on synthetic neural populations generated by a Lorenz attractor.
arXiv Detail & Related papers (2025-07-15T17:57:48Z) - Neural Substitute Solver for Efficient Edge Inference of Power Electronic Hybrid Dynamics [6.708926878153465]
How-ever, efficiently inferring the inherent hybrid continu-ous-discrete dynamics on resource-constrained edge hardware remains a significant challenge.<n>This letter pro-poses a neural substitute solver (NSS) approach, which is a neural-network-based framework aimed at rapid accurate inference with significantly reduced computational costs.
arXiv Detail & Related papers (2025-07-03T19:52:32Z) - KITINet: Kinetics Theory Inspired Network Architectures with PDE Simulation Approaches [43.872190335490515]
This paper introduces KITINet, a novel architecture that reinterprets feature propagation through the lens of non-equilibrium particle dynamics.<n>At its core, we propose a residual module that models update as the evolution of a particle system.<n>This formulation mimics particle collisions and energy exchange, enabling adaptive feature refinement via physics-informed interactions.
arXiv Detail & Related papers (2025-05-23T13:58:29Z) - Hybrid Temporal Differential Consistency Autoencoder for Efficient and Sustainable Anomaly Detection in Cyber-Physical Systems [0.0]
Cyberattacks on critical infrastructure, particularly water distribution systems, have increased due to rapid digitalization.<n>This study addresses key challenges in anomaly detection by leveraging time correlations in sensor data.<n>We propose a hybrid autoencoder-based approach, referred to as hybrid TDC-AE, which extends TDC by incorporating both deterministic nodes and conventional statistical nodes.
arXiv Detail & Related papers (2025-04-08T09:22:44Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a software spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.<n>We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software, once deployed in hardware.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resources [12.723995633698514]
inverter-based resources (IBRs) for renewable energy integration and electrification greatly challenges power system dynamic analysis.
To account for both synchronous generators (SGs) and IBRs, this work presents an approach for learning the model of an individual dynamic component.
arXiv Detail & Related papers (2024-09-22T14:07:10Z) - Input-to-State Stable Coupled Oscillator Networks for Closed-form Model-based Control in Latent Space [2.527926867319859]
We argue that a promising avenue is to leverage powerful and well-understood closed-form strategies from control theory literature.
We identify three fundamental shortcomings in existing latent-space models that have so far prevented this powerful combination.
We propose a novel Coupled Network (CON) model that simultaneously tackles all these issues.
arXiv Detail & Related papers (2024-09-13T00:11:09Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Forced Variational Integrator Networks for Prediction and Control of
Mechanical Systems [7.538482310185133]
We show that forced variational integrator networks (FVIN) architecture allows us to accurately account for energy dissipation and external forcing.
This can result in highly-data efficient model-based control and can predict on real non-conservative systems.
arXiv Detail & Related papers (2021-06-05T21:39:09Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.