Securing Transformer-based AI Execution via Unified TEEs and Crypto-protected Accelerators
- URL: http://arxiv.org/abs/2507.03278v2
- Date: Sun, 13 Jul 2025 01:36:44 GMT
- Title: Securing Transformer-based AI Execution via Unified TEEs and Crypto-protected Accelerators
- Authors: Jiaqi Xue, Yifei Zhao, Mengxin Zheng, Fan Yao, Yan Solihin, Qian Lou,
- Abstract summary: Machine learning runs on untrusted cloud infrastructure, exposing data and models to potential breaches.<n>Running model inference entirely within trusted execution environments (TEEs) is subject to non-trivial slowdown.<n>We propose TwinShield, a framework enabling secure Transformer inference in heterogeneous TEE and accelerator systems.
- Score: 19.93096649006403
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in Transformer models, e.g., large language models (LLMs), have brought tremendous breakthroughs in various artificial intelligence (AI) tasks, leading to their wide applications in many security-critical domains. Due to their unprecedented scale and prohibitively high development cost, these models have become highly valuable intellectual property for AI stakeholders and are increasingly deployed via machine learning as a service (MLaaS). However, MLaaS often runs on untrusted cloud infrastructure, exposing data and models to potential breaches. Mainstream protection mechanisms leverage trusted execution environments (TEEs) where confidentiality and integrity for secretive data are shielded using hardware-based encryption and integrity checking. Unfortunately, running model inference entirely within TEEs is subject to non-trivial slowdown, which is further exacerbated in LLMs due to the substantial computation and memory footprint involved. Recent studies reveal that the hybrid TEE-based scheme offloading partial model inference operations to the untrusted accelerators (e.g., GPU) is a promising solution. However, prior offloading schemes fail to ensure dual protection of data and model in Transformer inference, as they cannot securely offload critical operations, i.e., Attention and SoftMax, forcing these computations to remain confined within TEEs. To address these challenges, we propose TwinShield, a framework enabling secure Transformer inference in heterogeneous TEE and accelerator systems with dual protection for both model and data. TwinShield offloads ~87% of computation to GPUs and delivers 4.0x - 6.1x speedups over previous approaches across various Transformer models.
Related papers
- Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security [63.41350337821108]
We propose Secure Tug-of-War (SecTOW) to enhance the security of multimodal large language models (MLLMs)<n>SecTOW consists of two modules: a defender and an auxiliary attacker, both trained iteratively using reinforcement learning (GRPO)<n>We show that SecTOW significantly improves security while preserving general performance.
arXiv Detail & Related papers (2025-07-29T17:39:48Z) - MISLEADER: Defending against Model Extraction with Ensembles of Distilled Models [56.09354775405601]
Model extraction attacks aim to replicate the functionality of a black-box model through query access.<n>Most existing defenses presume that attacker queries have out-of-distribution (OOD) samples, enabling them to detect and disrupt suspicious inputs.<n>We propose MISLEADER, a novel defense strategy that does not rely on OOD assumptions.
arXiv Detail & Related papers (2025-06-03T01:37:09Z) - TensorShield: Safeguarding On-Device Inference by Shielding Critical DNN Tensors with TEE [15.680713503694951]
Existing wisdom deploys models within Trusted Execution Environments (TEEs)<n>This paper fills the gap withShield, the first efficient on-device inference work that shields partial tensors of the model while still fully defending against MS and MIA.
arXiv Detail & Related papers (2025-05-28T18:00:24Z) - T2V-OptJail: Discrete Prompt Optimization for Text-to-Video Jailbreak Attacks [67.91652526657599]
We formalize the T2V jailbreak attack as a discrete optimization problem and propose a joint objective-based optimization framework, called T2V-OptJail.<n>We conduct large-scale experiments on several T2V models, covering both open-source models and real commercial closed-source models.<n>The proposed method improves 11.4% and 10.0% over the existing state-of-the-art method in terms of attack success rate.
arXiv Detail & Related papers (2025-05-10T16:04:52Z) - T2VShield: Model-Agnostic Jailbreak Defense for Text-to-Video Models [88.63040835652902]
Text to video models are vulnerable to jailbreak attacks, where specially crafted prompts bypass safety mechanisms and lead to the generation of harmful or unsafe content.<n>We propose T2VShield, a comprehensive and model agnostic defense framework designed to protect text to video models from jailbreak threats.<n>Our method systematically analyzes the input, model, and output stages to identify the limitations of existing defenses.
arXiv Detail & Related papers (2025-04-22T01:18:42Z) - Dual Defense: Enhancing Privacy and Mitigating Poisoning Attacks in Federated Learning [10.102889257118145]
Federated learning (FL) is inherently susceptible to privacy breaches and poisoning attacks.<n>This paper introduces a Dual Defense Federated learning (DDFed) framework.<n>DDFed boosts privacy protection and mitigates poisoning attacks, without introducing new participant roles or disrupting the existing FL topology.
arXiv Detail & Related papers (2025-02-08T12:28:20Z) - A performance analysis of VM-based Trusted Execution Environments for Confidential Federated Learning [0.0]
Federated Learning (FL) is a distributed machine learning approach that has emerged as an effective way to address recent privacy concerns.<n>FL introduces the need for additional security measures as FL alone is still subject to vulnerabilities such as model and data poisoning and inference attacks.<n> Confidential Computing (CC) is a paradigm that, by leveraging hardware-based trusted execution environments (TEEs), protects the confidentiality and integrity of ML models and data.
arXiv Detail & Related papers (2025-01-20T15:58:48Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
Current mitigation strategies, while effective, are not resilient under adversarial attacks.
This paper introduces Resilient Guardrails for Large Language Models (RigorLLM), a novel framework designed to efficiently moderate harmful and unsafe inputs.
arXiv Detail & Related papers (2024-03-19T07:25:02Z) - Robust Synthetic Data-Driven Detection of Living-Off-the-Land Reverse Shells [14.710331873072146]
Living-off-the-land (LOTL) techniques pose a significant challenge to security operations.<n>We present a robust augmentation framework for cyber defense systems as Security Information and Event Management (SIEM) solutions.
arXiv Detail & Related papers (2024-02-28T13:49:23Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
Confidential computing enables the protection of confidential code and data in a co-tenanted cloud deployment using specialized hardware isolation units called Trusted Execution Environments (TEEs)
TEEs offer low-level C/C++-based toolchains that are susceptible to inherent memory safety vulnerabilities and lack language constructs to monitor explicit and implicit information-flow leaks.
We address the above with HasTEE+, a domain-specific language (cla) embedded in Haskell that enables programming TEEs in a high-level language with strong type-safety.
arXiv Detail & Related papers (2024-01-17T00:56:23Z) - Secure Instruction and Data-Level Information Flow Tracking Model for RISC-V [0.0]
Unauthorized access, fault injection, and privacy invasion are potential threats from untrusted actors.
We propose an integrated Information Flow Tracking (IFT) technique to enable runtime security to protect system integrity.
This study proposes a multi-level IFT model that integrates a hardware-based IFT technique with a gate-level-based IFT (GLIFT) technique.
arXiv Detail & Related papers (2023-11-17T02:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.