論文の概要: Global Variational Inference Enhanced Robust Domain Adaptation
- arxiv url: http://arxiv.org/abs/2507.03291v1
- Date: Fri, 04 Jul 2025 04:43:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.65934
- Title: Global Variational Inference Enhanced Robust Domain Adaptation
- Title(参考訳): ロバスト領域適応による大域的変分推論
- Authors: Lingkun Luo, Shiqiang Hu, Liming Chen,
- Abstract要約: 本稿では,構造を意識したクロスドメインアライメントを実現するために,変分推論による連続的,クラス条件のグローバルな事前学習フレームワークを提案する。
GVI-DAは、潜在特徴再構成によるドメインギャップを最小化し、ランダムサンプリングによるグローバルコードブック学習を用いて後部崩壊を緩和する。
低信頼の擬似ラベルを捨て、信頼性の高いターゲットドメインサンプルを生成することにより、ロバスト性をさらに向上する。
- 参考スコア(独自算出の注目度): 7.414646586981638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based domain adaptation (DA) methods have shown strong performance by learning transferable representations. However, their reliance on mini-batch training limits global distribution modeling, leading to unstable alignment and suboptimal generalization. We propose Global Variational Inference Enhanced Domain Adaptation (GVI-DA), a framework that learns continuous, class-conditional global priors via variational inference to enable structure-aware cross-domain alignment. GVI-DA minimizes domain gaps through latent feature reconstruction, and mitigates posterior collapse using global codebook learning with randomized sampling. It further improves robustness by discarding low-confidence pseudo-labels and generating reliable target-domain samples. Extensive experiments on four benchmarks and thirty-eight DA tasks demonstrate consistent state-of-the-art performance. We also derive the model's evidence lower bound (ELBO) and analyze the effects of prior continuity, codebook size, and pseudo-label noise tolerance. In addition, we compare GVI-DA with diffusion-based generative frameworks in terms of optimization principles and efficiency, highlighting both its theoretical soundness and practical advantages.
- Abstract(参考訳): 深層学習に基づくドメイン適応(DA)法は,伝達可能な表現を学習することによって,高い性能を示した。
しかし、ミニバッチトレーニングへの依存は、グローバルな分布モデリングを制限し、不安定なアライメントと準最適一般化をもたらす。
本稿では,GVI-DA(Global Variational Inference Enhanced Domain Adaptation)を提案する。
GVI-DAは、潜在特徴再構成によるドメインギャップを最小化し、ランダムサンプリングによるグローバルコードブック学習を用いて後部崩壊を緩和する。
低信頼の擬似ラベルを捨て、信頼性の高いターゲットドメインサンプルを生成することにより、ロバスト性をさらに向上する。
4つのベンチマークと38のDAタスクに関する大規模な実験は、一貫した最先端のパフォーマンスを示している。
また,モデルのエビデンス・ローバウンド(ELBO)を導出し,先行継続性,コードブックサイズ,擬似ラベル雑音耐性の影響を解析した。
さらに,GVI-DAと拡散型生成フレームワークを最適化原理と効率の観点から比較し,その理論的健全性と実用的優位性を強調した。
関連論文リスト
- Partial Transportability for Domain Generalization [56.37032680901525]
本稿では, 部分的同定と輸送可能性の理論に基づいて, 対象分布の関数値の有界化に関する新たな結果を紹介する。
我々の貢献は、輸送可能性問題に対する最初の一般的な評価手法を提供することである。
本稿では,スケーラブルな推論を実現するための勾配に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2025-03-30T22:06:37Z) - Gradient-Guided Annealing for Domain Generalization [5.124256074746721]
ドメインの一般化効率を向上させるため,GGAアルゴリズムを提案する。
GGAの有効性は、広く受け入れられ、困難な画像分類領域の一般化ベンチマークで評価される。
論文 参考訳(メタデータ) (2025-02-27T15:01:55Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - Posterior Differential Regularization with f-divergence for Improving
Model Robustness [95.05725916287376]
クリーン入力とノイズ入力のモデル後部差を規則化する手法に着目する。
後微分正則化を$f$-divergencesの族に一般化する。
実験の結果, 後方微分を$f$-divergenceで正規化することで, モデルロバスト性の向上が期待できることがわかった。
論文 参考訳(メタデータ) (2020-10-23T19:58:01Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。