論文の概要: Prompt Engineering Guidelines for Using Large Language Models in Requirements Engineering
- arxiv url: http://arxiv.org/abs/2507.03405v1
- Date: Fri, 04 Jul 2025 09:13:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.72042
- Title: Prompt Engineering Guidelines for Using Large Language Models in Requirements Engineering
- Title(参考訳): 要求工学における大規模言語モデルの利用のためのプロンプトエンジニアリングガイドライン
- Authors: Krishna Ronanki, Simon Arvidsson, Johan Axell,
- Abstract要約: 大規模言語モデル(LLM)のようなジェネレーティブAIモデルは、要求工学(RE)を含むさまざまな活動において、その実用性を実証している。
LLM出力の品質と精度の確保は重要であり、迅速なエンジニアリングがモデル応答のガイドとなる。
既存の文献は、特にREアクティビティのために、迅速なエンジニアリングをどのように活用できるか、限定的なガイダンスを提供している。
- 参考スコア(独自算出の注目度): 2.867517731896504
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid emergence of generative AI models like Large Language Models (LLMs) has demonstrated its utility across various activities, including within Requirements Engineering (RE). Ensuring the quality and accuracy of LLM-generated output is critical, with prompt engineering serving as a key technique to guide model responses. However, existing literature provides limited guidance on how prompt engineering can be leveraged, specifically for RE activities. The objective of this study is to explore the applicability of existing prompt engineering guidelines for the effective usage of LLMs within RE. To achieve this goal, we began by conducting a systematic review of primary literature to compile a non-exhaustive list of prompt engineering guidelines. Then, we conducted interviews with RE experts to present the extracted guidelines and gain insights on the advantages and limitations of their application within RE. Our literature review indicates a shortage of prompt engineering guidelines for domain-specific activities, specifically for RE. Our proposed mapping contributes to addressing this shortage. We conclude our study by identifying an important future line of research within this field.
- Abstract(参考訳): LLM(Large Language Models)のような生成AIモデルの急速な台頭は、Requirements Engineering(RE)など、さまざまな活動でその実用性を実証している。
LLM出力の品質と精度の確保は重要であり、迅速なエンジニアリングがモデル応答のガイドとなる。
しかし、既存の文献は、特にREアクティビティのために、迅速なエンジニアリングをどのように活用できるかについての限定的なガイダンスを提供している。
本研究の目的は,RE 内で LLM を効果的に活用するために,既存のプロンプトエンジニアリングガイドラインの適用性を検討することである。
この目的を達成するために、我々は初等文学の体系的なレビューを行い、急進的な技術ガイドラインの抜本的リストをまとめることからはじめた。
そして,REの専門家にインタビューを行い,抽出したガイドラインを提示し,REにおけるアプリケーションのメリットと限界について考察した。
文献レビューでは、特にREのために、ドメイン固有の活動に対して、迅速な技術ガイドラインが不足していることが示されている。
この不足に対処するために提案したマッピングが役立ちます。
本研究の結論は,本分野における重要な研究の行程を特定することである。
関連論文リスト
- From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Empowering Few-Shot Relation Extraction with The Integration of Traditional RE Methods and Large Language Models [48.846159555253834]
Few-Shot Relation extract (FSRE)は自然言語処理(NLP)の研究者にアピールする
大規模言語モデル(LLM)の近年の出現により、多くの研究者が文脈学習(ICL)を通じてFSREを探求している。
論文 参考訳(メタデータ) (2024-07-12T03:31:11Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Using Large Language Models for Natural Language Processing Tasks in Requirements Engineering: A Systematic Guideline [2.6644624823848426]
大規模言語モデル(LLM)は、要求工学(RE)タスクを自動化するための基盤となる。
本章は、LLMに関する本質的な知識を読者に提供することを目的としている。
学生、研究者、実践者が特定の目的に対処するためにLLMを活用するための包括的なガイドラインを提供する。
論文 参考訳(メタデータ) (2024-02-21T14:00:52Z) - Towards Generating Executable Metamorphic Relations Using Large Language Models [46.26208489175692]
大規模言語モデル(LLM)を用いた要件から実行可能なMRを自動的に抽出する手法を提案する。
提案手法の有効性を評価するため,シーメンス・インダストリー・ソフトウェアと共同で質問紙調査を行った。
論文 参考訳(メタデータ) (2024-01-30T13:52:47Z) - Tapping the Potential of Large Language Models as Recommender Systems: A Comprehensive Framework and Empirical Analysis [91.5632751731927]
ChatGPTのような大規模言語モデルは、一般的なタスクを解く際、顕著な能力を示した。
本稿では,レコメンデーションタスクにおけるLLMの活用のための汎用フレームワークを提案し,レコメンデーションタスクとしてのLLMの機能に着目した。
提案手法は,提案手法が推薦結果に与える影響を解析し,提案手法とモデルアーキテクチャ,パラメータスケール,コンテキスト長について検討する。
論文 参考訳(メタデータ) (2024-01-10T08:28:56Z) - Unleashing the potential of prompt engineering for large language models [1.6006550105523192]
大規模言語モデル(LLM)の能力を解き放つ上で,迅速なエンジニアリングが果たす重要な役割を概観する
自己整合性、思考の連鎖、そして生成された知識などの技術を含む、素早い工学の基礎的方法論と先進的な方法論の両方を検査する。
AIセキュリティの側面、特に迅速なエンジニアリングの脆弱性を悪用する敵攻撃について論じる。
論文 参考訳(メタデータ) (2023-10-23T09:15:18Z) - PRISMA-DFLLM: An Extension of PRISMA for Systematic Literature Reviews
using Domain-specific Finetuned Large Language Models [0.0]
本稿では,Large Language Models(LLMs)のパワーと,PRISMA(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)の厳密な報告ガイドラインを組み合わせたAI対応方法論フレームワークを提案する。
厳密なSLRプロセスの結果として選択されたドメイン固有の学術論文にLCMを微調整することにより、提案するPRISMA-DFLLMレポートガイドラインは、より効率、再利用性、拡張性を達成する可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-15T02:52:50Z) - A Comprehensive Survey on Relation Extraction: Recent Advances and New Frontiers [76.51245425667845]
関係抽出(RE)は、基礎となるコンテンツからエンティティ間の関係を識別する。
ディープニューラルネットワークはREの分野を支配しており、顕著な進歩を遂げている。
この調査は、現実世界のREシステムの課題に対処するための研究者の協力的な取り組みを促進することが期待されている。
論文 参考訳(メタデータ) (2023-06-03T08:39:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。