An Efficient Deep Learning Framework for Brain Stroke Diagnosis Using Computed Tomography (CT) Images
- URL: http://arxiv.org/abs/2507.03558v2
- Date: Sun, 13 Jul 2025 05:47:35 GMT
- Title: An Efficient Deep Learning Framework for Brain Stroke Diagnosis Using Computed Tomography (CT) Images
- Authors: Md. Sabbir Hossen, Eshat Ahmed Shuvo, Shibbir Ahmed Arif, Pabon Shaha, Md. Saiduzzaman, Mostofa Kamal Nasir,
- Abstract summary: Brain stroke is a leading cause of mortality and long-term disability worldwide.<n>Most stroke classification techniques use a single slice-level prediction mechanism.<n>This study investigates machine learning models for early brain stroke prediction using CT scan images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain stroke is a leading cause of mortality and long-term disability worldwide, underscoring the need for precise and rapid prediction techniques. Computed Tomography (CT) scan is considered one of the most effective methods for diagnosing brain strokes. Most stroke classification techniques use a single slice-level prediction mechanism, requiring radiologists to manually select the most critical CT slice from the original CT volume. Although clinical evaluations are often used in traditional diagnostic procedures, machine learning (ML) has opened up new avenues for improving stroke diagnosis. To supplement traditional diagnostic techniques, this study investigates machine learning models for early brain stroke prediction using CT scan images. This research proposes a novel machine learning approach to brain stroke detection, focusing on optimizing classification performance with pre-trained deep learning models and advanced optimization strategies. Pre-trained models, including DenseNet201, InceptionV3, MobileNetV2, ResNet50, and Xception, are used for feature extraction. Feature engineering techniques, including BFO, PCA, and LDA, further enhance model performance. These features are then classified using machine learning algorithms, including SVC, RF, XGB, DT, LR, KNN, and GNB. Our experiments demonstrate that the combination of MobileNetV2, LDA, and SVC achieved the highest classification accuracy of 97.93%, significantly outperforming other model-optimizer-classifier combinations. The results underline the effectiveness of integrating lightweight pre-trained models with robust optimization and classification techniques for brain stroke diagnosis.
Related papers
- Brain Stroke Detection and Classification Using CT Imaging with Transformer Models and Explainable AI [0.0]
This study proposed an artificial intelligence framework for multiclass stroke classification using CT scan images.<n>The proposed method adopted MaxViT, a state-of-the-art Vision Transformer, as the primary deep learning model for image-based stroke classification.<n>To enhance model generalization and address class imbalance, we applied data augmentation techniques.
arXiv Detail & Related papers (2025-07-13T13:50:50Z) - Hierarchical Deep Feature Fusion and Ensemble Learning for Enhanced Brain Tumor MRI Classification [3.776159955137874]
The framework incorporates comprehensive preprocessing and data augmentation of brain magnetic resonance images (MRI)<n>The novelty lies in the dual-level ensembling strategy: feature-level ensembling, and classifier-level ensembling.<n> Experiments on two public Kaggle MRI brain tumor datasets demonstrate that this approach significantly surpasses state-of-the-art methods.
arXiv Detail & Related papers (2025-06-14T05:53:54Z) - Enhancing Orthopox Image Classification Using Hybrid Machine Learning and Deep Learning Models [40.325359811289445]
This paper uses Machine Learning models combined with pretrained Deep Learning models to extract deep feature representations without the need for augmented data.<n>The findings show that this feature extraction method, when paired with other methods in the state-of-the-art, produces excellent classification outcomes.
arXiv Detail & Related papers (2025-06-06T11:52:07Z) - Enhancing Stroke Diagnosis in the Brain Using a Weighted Deep Learning Approach [0.0]
A brain stroke occurs when blood flow to a part of the brain is disrupted, leading to cell death.<n>Traditional stroke diagnosis methods, such as CT scans and MRIs, are costly and time-consuming.<n>This study proposes a weighted voting ensemble (WVE) machine learning model that combines predictions from classifiers like random forest, Deep Learning, and histogram-based gradient boosting to predict strokes more effectively.<n>The model achieved 94.91% accuracy on a private dataset, enabling early risk assessment and prevention.
arXiv Detail & Related papers (2025-04-17T21:54:36Z) - Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
Brain tumors pose a serious health threat due to their rapid growth and potential for metastasis.
This study aims to improve the efficiency and accuracy of brain tumor classification.
Our approach combines state-of-the-art deep learning algorithms, including the Vision Transformer (ViT), Capsule Neural Network (CapsNet), and convolutional neural networks (CNNs) such as ResNet-152 and VGG16.
arXiv Detail & Related papers (2024-10-31T07:28:06Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
In this paper, an ensemble learning technique is proposed for early detection and management of diabetic retinopathy.
The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99%)$ in comparison to the previous models.
arXiv Detail & Related papers (2024-07-25T04:09:17Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.<n>A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.<n>This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Comparative Study of Machine Learning Algorithms in Detecting Cardiovascular Diseases [0.0]
The detection of cardiovascular diseases (CVD) using machine learning techniques represents a significant advancement in medical diagnostics.
This study explores a comparative analysis of various machine learning algorithms, including Logistic Regression, Decision Tree, Random Forest, Gradient Boosting, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and XGBoost.
The findings highlight the efficacy of ensemble methods and advanced algorithms in providing reliable predictions, thereby offering a comprehensive framework for CVD detection.
arXiv Detail & Related papers (2024-05-27T11:29:54Z) - Brain Tumor Detection and Classification Using a New Evolutionary
Convolutional Neural Network [18.497065020090062]
The goal of this study is to employ brain MRI images to distinguish between healthy and unhealthy patients.
Deep learning techniques have recently sparked interest as a means of diagnosing brain tumours more accurately and robustly.
arXiv Detail & Related papers (2022-04-26T13:20:42Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - Momentum Contrastive Learning for Few-Shot COVID-19 Diagnosis from Chest
CT Images [41.73507451077361]
We propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only requires a few samples for training.
We use contrastive learning to train an encoder which can capture expressive feature representations on large and publicly available lung datasets.
Our results demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on chest CT images.
arXiv Detail & Related papers (2020-06-16T10:14:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.