Advancing Quantum State Preparation Using Decision Diagram with Local Invertible Maps
- URL: http://arxiv.org/abs/2507.17170v2
- Date: Thu, 31 Jul 2025 07:42:03 GMT
- Title: Advancing Quantum State Preparation Using Decision Diagram with Local Invertible Maps
- Authors: Xin Hong, Aochu Dai, Chenjian Li, Sanjiang Li, Shenggang Ying, Mingsheng Ying,
- Abstract summary: We propose a family of efficient Quantum State Preparation (QSP) algorithms tailored to different numbers of available ancilla qubits.<n>Our approach exploits the power of Local Invertible Map Decision Diagrams (LimTDDs) to reduce quantum circuit complexity.
- Score: 5.328178128965817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state preparation (QSP) is a fundamental task in quantum computing and quantum information processing. It is critical to the execution of many quantum algorithms, including those in quantum machine learning. In this paper, we propose a family of efficient QSP algorithms tailored to different numbers of available ancilla qubits - ranging from no ancilla qubits, to a single ancilla qubit, to a sufficiently large number of ancilla qubits. Our approach exploits the power of Local Invertible Map Tensor Decision Diagrams (LimTDDs) - a highly compact representation of quantum states that combines tensor networks and decision diagrams to reduce quantum circuit complexity. Extensive experiments demonstrate that our methods significantly outperform existing approaches and exhibit better scalability for large-scale quantum states, both in terms of runtime and gate complexity. Furthermore, our method shows exponential improvement in best-case scenarios.
Related papers
- VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Quantum-Chiplet: A Novel Python-Based Efficient and Scalable Design Methodology for Quantum Circuit Verification and Implementation [5.727672509269657]
We propose a new quantum representation (QPR) to facilitate the analysis of massively parallel quantum computation.<n>For the verification of quantum circuits, we introduce Quantum-Chiplet, a hierarchical quantum behavior modeling methodology.<n>A quantum amplitude estimation example demonstrates that this method significantly improves the design process, with more than 10x speed-up compared to IBM Qiskit at 14 qubits.
arXiv Detail & Related papers (2025-03-13T05:12:41Z) - Active Learning with Variational Quantum Circuits for Quantum Process Tomography [6.842224049271109]
We propose a general active learning (AL) framework that adaptively selects the most informative subset of quantum states for reconstruction.<n>We demonstrate our algorithms by reconstructing the unitary quantum processes resulting from random quantum circuits with up to seven qubits.
arXiv Detail & Related papers (2024-12-30T13:12:56Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Parameterized quantum comb and simpler circuits for reversing unknown qubit-unitary operations [8.14510296131348]
We propose PQComb to harness the full potential of quantum combs for diverse quantum process transformation tasks.<n>We present two streamlined protocols for the time-reversal simulation of unknown qubit unitary evolutions.<n>We also extend PQComb to solve the problems of qutrit unitary transformation and channel discrimination.
arXiv Detail & Related papers (2024-03-06T14:53:24Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Preparation of Entangled Many-Body States with Machine Learning [0.06768558752130309]
Preparation of a target quantum many-body state on quantum simulators is one of the significant steps in quantum science and technology.
With a small number of qubits, a few quantum states, such as the Greenberger-Horne-Zeilinger state, have been prepared, but fundamental difficulties in systems with many qubits remain.
Here, we provide one algorithm with an implementation of a deep learning process and achieve to prepare the target ground states with many qubits.
arXiv Detail & Related papers (2023-07-27T05:03:57Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
arXiv Detail & Related papers (2023-07-18T04:51:28Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
We propose an improved iterative quantum algorithm to prepare the ground state of a Hamiltonian system.
Our approach has advantages including the higher success probability at each iteration, the measurement precision-independent sampling complexity, the lower gate complexity, and only quantum resources are required when the ancillary state is well prepared.
arXiv Detail & Related papers (2022-10-16T05:57:43Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.