論文の概要: SAMed-2: Selective Memory Enhanced Medical Segment Anything Model
- arxiv url: http://arxiv.org/abs/2507.03698v1
- Date: Fri, 04 Jul 2025 16:30:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.84152
- Title: SAMed-2: Selective Memory Enhanced Medical Segment Anything Model
- Title(参考訳): SAMed-2:Selective Memory Enhanced Medical Segment Anything Model
- Authors: Zhiling Yan, Sifan Song, Dingjie Song, Yiwei Li, Rong Zhou, Weixiang Sun, Zhennong Chen, Sekeun Kim, Hui Ren, Tianming Liu, Quanzheng Li, Xiang Li, Lifang He, Lichao Sun,
- Abstract要約: SAM-2アーキテクチャ上に構築された医用画像分割のための新しい基礎モデルを提案する。
画像エンコーダにテンポラプタアダプタを導入し、画像相関をキャプチャし、信頼性駆動型メモリ機構により、後続の検索のために高確かさの機能を格納する。
内部ベンチマークと10の外部データセットによる実験は、マルチタスクシナリオにおける最先端のベースラインよりも優れたパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 28.534663662441293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent "segment anything" efforts show promise by learning from large-scale data, but adapting such models directly to medical images remains challenging due to the complexity of medical data, noisy annotations, and continual learning requirements across diverse modalities and anatomical structures. In this work, we propose SAMed-2, a new foundation model for medical image segmentation built upon the SAM-2 architecture. Specifically, we introduce a temporal adapter into the image encoder to capture image correlations and a confidence-driven memory mechanism to store high-certainty features for later retrieval. This memory-based strategy counters the pervasive noise in large-scale medical datasets and mitigates catastrophic forgetting when encountering new tasks or modalities. To train and evaluate SAMed-2, we curate MedBank-100k, a comprehensive dataset spanning seven imaging modalities and 21 medical segmentation tasks. Our experiments on both internal benchmarks and 10 external datasets demonstrate superior performance over state-of-the-art baselines in multi-task scenarios. The code is available at: https://github.com/ZhilingYan/Medical-SAM-Bench.
- Abstract(参考訳): 近年の「セグメント・アズ」の取り組みは、大規模なデータから学ぶことで有望であることが示されているが、医療データの複雑さ、ノイズの多いアノテーション、様々なモダリティや解剖学的構造にまたがる継続的な学習要件のために、そのようなモデルを医療画像に直接適用することは依然として困難である。
本研究では,SAM-2アーキテクチャ上に構築された医療画像セグメンテーションの基盤モデルであるSAMed-2を提案する。
具体的には,イメージエンコーダにテンポラリアダプタを導入し,画像相関をキャプチャし,信頼性駆動型メモリ機構により,後続の検索に高信頼な特徴を格納する。
このメモリベースの戦略は、大規模な医療データセットの広範にわたるノイズに対処し、新しいタスクやモダリティに遭遇した際の破滅的な忘れを軽減します。
MedBank-100kは、7つの画像モダリティと21の医療セグメンテーションタスクにまたがる包括的データセットである。
内部ベンチマークと10の外部データセットによる実験は、マルチタスクシナリオにおける最先端のベースラインよりも優れたパフォーマンスを示している。
コードは、https://github.com/ZhilingYan/Medical-SAM-Bench.comで入手できる。
関連論文リスト
- Learnable Prompting SAM-induced Knowledge Distillation for Semi-supervised Medical Image Segmentation [47.789013598970925]
半教師型医用画像分割のための知識蒸留フレームワークKnowSAMを提案する。
我々のモデルは最先端の半教師付きセグメンテーションアプローチより優れている。
論文 参考訳(メタデータ) (2024-12-18T11:19:23Z) - DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
本稿では,2次元医療データと2次元医療データとのギャップを埋めるために,DB-SAMという二分岐型SAMフレームワークを提案する。
文献における最近の医療用SAMアダプタと比較して,DB-SAMは8.8%向上した。
論文 参考訳(メタデータ) (2024-10-05T14:36:43Z) - MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
我々は,空間的・時間的微粒なモデリングのためのMed-STフレームワークを提案する。
空間モデリングでは、Med-STはMixture of View Expert (MoVE)アーキテクチャを使用して、正面と横の両方のビューから異なる視覚的特徴を統合する。
時間的モデリングのために,フォワードマッピング分類 (FMC) とリバースマッピング回帰 (RMR) による新たな双方向サイクル整合性目標を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:15:09Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
医用画像の領域分割を行うために, SAMを2次元から3次元に変換する新しい適応法を提案する。
本モデルでは, 腎腫瘍, 膵腫瘍, 大腸癌の3つのタスクのうち8.25%, 29.87%, 10.11%の3つのタスクにおいて, ドメイン・オブ・ザ・アーティヴ・メディカル・イメージ・セグメンテーション・モデルより優れ, 肝腫瘍セグメンテーションでも同様の性能が得られる。
論文 参考訳(メタデータ) (2023-06-23T12:09:52Z) - Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation [51.770805270588625]
Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
近年の研究では、SAMは医用画像のセグメンテーションにおいて過小評価されている。
ドメイン固有の医療知識をセグメンテーションモデルに組み込んだ医療SAMアダプタ(Med-SA)を提案する。
論文 参考訳(メタデータ) (2023-04-25T07:34:22Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) は、ユーザ定義オブジェクトをインタラクティブな方法でセグメント化する基礎モデルである。
SAMの医用画像の分類能力について,各種のモダリティと解剖から,19の医用画像データセットの集合体を用いて評価した。
論文 参考訳(メタデータ) (2023-04-20T17:50:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。