Sign Spotting Disambiguation using Large Language Models
- URL: http://arxiv.org/abs/2507.03703v4
- Date: Thu, 07 Aug 2025 13:34:51 GMT
- Title: Sign Spotting Disambiguation using Large Language Models
- Authors: JianHe Low, Ozge Mercanoglu Sincan, Richard Bowden,
- Abstract summary: We introduce a training-free framework that integrates Large Language Models (LLMs) to significantly enhance sign spotting quality.<n>Our approach extracts global-temporal and hand shape features, which are then matched against a large-scale sign dictionary.<n>This dictionary-based matching inherently offers superior vocabulary flexibility without requiring model retraining.
- Score: 29.79050316749927
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sign spotting, the task of identifying and localizing individual signs within continuous sign language video, plays a pivotal role in scaling dataset annotations and addressing the severe data scarcity issue in sign language translation. While automatic sign spotting holds great promise for enabling frame-level supervision at scale, it grapples with challenges such as vocabulary inflexibility and ambiguity inherent in continuous sign streams. Hence, we introduce a novel, training-free framework that integrates Large Language Models (LLMs) to significantly enhance sign spotting quality. Our approach extracts global spatio-temporal and hand shape features, which are then matched against a large-scale sign dictionary using dynamic time warping and cosine similarity. This dictionary-based matching inherently offers superior vocabulary flexibility without requiring model retraining. To mitigate noise and ambiguity from the matching process, an LLM performs context-aware gloss disambiguation via beam search, notably without fine-tuning. Extensive experiments on both synthetic and real-world sign language datasets demonstrate our method's superior accuracy and sentence fluency compared to traditional approaches, highlighting the potential of LLMs in advancing sign spotting.
Related papers
- Signs as Tokens: A Retrieval-Enhanced Multilingual Sign Language Generator [55.94334001112357]
We introduce a multilingual sign language model, Signs as Tokens (SOKE), which can generate 3D sign avatars autoregressively from text inputs.<n>We propose a retrieval-enhanced SLG approach, which incorporates external sign dictionaries to provide accurate word-level signs.
arXiv Detail & Related papers (2024-11-26T18:28:09Z) - MS2SL: Multimodal Spoken Data-Driven Continuous Sign Language Production [93.32354378820648]
We propose a unified framework for continuous sign language production, easing communication between sign and non-sign language users.
A sequence diffusion model, utilizing embeddings extracted from text or speech, is crafted to generate sign predictions step by step.
Experiments on How2Sign and PHOENIX14T datasets demonstrate that our model achieves competitive performance in sign language production.
arXiv Detail & Related papers (2024-07-04T13:53:50Z) - A Spatio-Temporal Representation Learning as an Alternative to Traditional Glosses in Sign Language Translation and Production [9.065171626657818]
This paper addresses the challenges associated with the use of glosses in Sign Language Translation (SLT) and Sign Language Production Language (SLP)<n>We introduce Universal Gloss-level Representation (UniGloR), a framework designed to capture thetemporal inherent sign language.<n>Our experiments in a keypoint-based setting demonstrate that UniGloR either outperforms or matches performance of previous SLT and SLP methods.
arXiv Detail & Related papers (2024-07-03T07:12:36Z) - Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
arXiv Detail & Related papers (2024-06-15T04:50:19Z) - A Tale of Two Languages: Large-Vocabulary Continuous Sign Language Recognition from Spoken Language Supervision [74.972172804514]
We introduce a multi-task Transformer model, CSLR2, that is able to ingest a signing sequence and output in a joint embedding space between signed language and spoken language text.
New dataset annotations provide continuous sign-level annotations for six hours of test videos, and will be made publicly available.
Our model significantly outperforms the previous state of the art on both tasks.
arXiv Detail & Related papers (2024-05-16T17:19:06Z) - SignVTCL: Multi-Modal Continuous Sign Language Recognition Enhanced by
Visual-Textual Contrastive Learning [51.800031281177105]
SignVTCL is a continuous sign language recognition framework enhanced by visual-textual contrastive learning.
It integrates multi-modal data (video, keypoints, and optical flow) simultaneously to train a unified visual backbone.
It achieves state-of-the-art results compared with previous methods.
arXiv Detail & Related papers (2024-01-22T11:04:55Z) - Improving Continuous Sign Language Recognition with Cross-Lingual Signs [29.077175863743484]
We study the feasibility of utilizing multilingual sign language corpora to facilitate continuous sign language recognition.
We first build two sign language dictionaries containing isolated signs that appear in two datasets.
Then we identify the sign-to-sign mappings between two sign languages via a well-optimized isolated sign language recognition model.
arXiv Detail & Related papers (2023-08-21T15:58:47Z) - Signing at Scale: Learning to Co-Articulate Signs for Large-Scale
Photo-Realistic Sign Language Production [43.45785951443149]
Sign languages are visual languages, with vocabularies as rich as their spoken language counterparts.
Current deep-learning based Sign Language Production (SLP) models produce under-articulated skeleton pose sequences.
We tackle large-scale SLP by learning to co-articulate between dictionary signs.
We also propose SignGAN, a pose-conditioned human synthesis model that produces photo-realistic sign language videos.
arXiv Detail & Related papers (2022-03-29T08:51:38Z) - Modeling Intensification for Sign Language Generation: A Computational
Approach [13.57903290481737]
End-to-end sign language generation models do not accurately represent the prosody in sign language.
We aim to improve the prosody in generated sign languages by modeling intensification in a data-driven manner.
We find that our efforts in intensification modeling yield better results when evaluated with automatic metrics.
arXiv Detail & Related papers (2022-03-18T01:13:21Z) - Watch, read and lookup: learning to spot signs from multiple supervisors [99.50956498009094]
Given a video of an isolated sign, our task is to identify whether and where it has been signed in a continuous, co-articulated sign language video.
We train a model using multiple types of available supervision by: (1) watching existing sparsely labelled footage; (2) reading associated subtitles which provide additional weak-supervision; and (3) looking up words in visual sign language dictionaries.
These three tasks are integrated into a unified learning framework using the principles of Noise Contrastive Estimation and Multiple Instance Learning.
arXiv Detail & Related papers (2020-10-08T14:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.