LLMs model how humans induce logically structured rules
- URL: http://arxiv.org/abs/2507.03876v1
- Date: Sat, 05 Jul 2025 03:24:18 GMT
- Title: LLMs model how humans induce logically structured rules
- Authors: Alyssa Loo, Ellie Pavlick, Roman Feiman,
- Abstract summary: A long-standing debate concerns the adequacy of artificial neural networks as computational models.<n>Recent advances in neural networks -- specifically, the advent of large language models (LLMs) -- represent an important shift in this debate.<n>We argue that LLMs may instantiate a novel theoretical account of the primitive representations and computations necessary to explain human logical concepts.
- Score: 18.202446211409548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A central goal of cognitive science is to provide a computationally explicit account of both the structure of the mind and its development: what are the primitive representational building blocks of cognition, what are the rules via which those primitives combine, and where do these primitives and rules come from in the first place? A long-standing debate concerns the adequacy of artificial neural networks as computational models that can answer these questions, in particular in domains related to abstract cognitive function, such as language and logic. This paper argues that recent advances in neural networks -- specifically, the advent of large language models (LLMs) -- represent an important shift in this debate. We test a variety of LLMs on an existing experimental paradigm used for studying the induction of rules formulated over logical concepts. Across four experiments, we find converging empirical evidence that LLMs provide at least as good a fit to human behavior as models that implement a Bayesian probablistic language of thought (pLoT), which have been the best computational models of human behavior on the same task. Moreover, we show that the LLMs make qualitatively different predictions about the nature of the rules that are inferred and deployed in order to complete the task, indicating that the LLM is unlikely to be a mere implementation of the pLoT solution. Based on these results, we argue that LLMs may instantiate a novel theoretical account of the primitive representations and computations necessary to explain human logical concepts, with which future work in cognitive science should engage.
Related papers
- Computational Thinking Reasoning in Large Language Models [69.28428524878885]
Computational Thinking Model (CTM) is a novel framework that incorporates computational thinking paradigms into large language models (LLMs)<n>Live code execution is seamlessly integrated into the reasoning process, allowing CTM to think by computing.<n>CTM outperforms conventional reasoning models and tool-augmented baselines in terms of accuracy, interpretability, and generalizability.
arXiv Detail & Related papers (2025-06-03T09:11:15Z) - Emergence of psychopathological computations in large language models [22.78614613457714]
We propose a computational-theoretical framework to provide an account of psychopathology applicable to large language models.<n>Our work alludes to the possibility of AI systems with psychopathological behaviors in the near future.
arXiv Detail & Related papers (2025-04-10T15:36:30Z) - Hypothesis-Driven Theory-of-Mind Reasoning for Large Language Models [76.6028674686018]
We introduce thought-tracing, an inference-time reasoning algorithm to trace the mental states of agents.<n>Our algorithm is modeled after the Bayesian theory-of-mind framework.<n>We evaluate thought-tracing on diverse theory-of-mind benchmarks, demonstrating significant performance improvements.
arXiv Detail & Related papers (2025-02-17T15:08:50Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.<n>We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.<n>We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Logical forms complement probability in understanding language model (and human) performance [14.694876851134273]
This work conducts a systematic investigation of large language models' ability to perform logical reasoning in natural language.<n>We introduce a controlled dataset of hypothetical and disjunctive syllogisms in propositional and modal logic.<n>We show similarities and discrepancies between the logical reasoning performances of humans and LLMs by collecting and comparing behavioral data from both.
arXiv Detail & Related papers (2025-02-13T18:46:44Z) - Human-like conceptual representations emerge from language prediction [72.5875173689788]
Large language models (LLMs) trained exclusively through next-token prediction over language data exhibit remarkably human-like behaviors.<n>Are these models developing concepts akin to humans, and if so, how are such concepts represented and organized?<n>Our results demonstrate that LLMs can flexibly derive concepts from linguistic descriptions in relation to contextual cues about other concepts.<n>These findings establish that structured, human-like conceptual representations can naturally emerge from language prediction without real-world grounding.
arXiv Detail & Related papers (2025-01-21T23:54:17Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
Large Language Models (LLMs) have revolutionized natural language processing, yet they struggle with inconsistent reasoning.
This research introduces Proof of Thought, a framework that enhances the reliability and transparency of LLM outputs.
Key contributions include a robust type system with sort management for enhanced logical integrity, explicit representation of rules for clear distinction between factual and inferential knowledge.
arXiv Detail & Related papers (2024-09-25T18:35:45Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - LLMs as Models for Analogical Reasoning [14.412456982731467]
Analogical reasoning is fundamental to human cognition and learning.<n>Recent studies have shown that large language models can sometimes match humans in analogical reasoning tasks.
arXiv Detail & Related papers (2024-06-19T20:07:37Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.