Continuous variable entanglement with orbital angular momentum multiplexing in coherently prepared media
- URL: http://arxiv.org/abs/2507.03944v1
- Date: Sat, 05 Jul 2025 08:03:42 GMT
- Title: Continuous variable entanglement with orbital angular momentum multiplexing in coherently prepared media
- Authors: Fan Meng, Hao Zhu, Xin-Yao Huang, Guo-Feng Zhang,
- Abstract summary: We present a theoretical framework for generating vortex optical entanglement in coherently prepared media.<n>The entanglement arises from the quantum correlation between the two light fields, induced by atomic coherence.<n>Our findings offer a reference framework for vortex light entanglement, with potential implications across quantum teleportation, quantum key distribution, quantum computing, high-dimensional quantum information, and other related fields.
- Score: 13.345606978413024
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Quantum entanglement constitutes a pivotal resource, serving as a fundamental cornerstone within the field of quantum information science. In recent years, the study of vortex light entanglement has garnered widespread attention due to its unique structure and inherent advantages; however, the majority of these investigations are primarily focused on discrete variable (DV) systems. In this paper, we present a theoretical framework for generating vortex optical entanglement in coherently prepared media, employing continuous variable (CV) analysis and leveraging Raman scattering as an alternative to the conventional spontaneous parametric down-conversion (SPDC) method. The entanglement arises from the quantum correlation between the two light fields, induced by atomic coherence. Using numerical simulations, we thoroughly explore the impact of various tunable system parameters on the degree of entanglement, ultimately identifying the optimal conditions for maximal entanglement. Our findings offer a reference framework for vortex light entanglement, with potential implications across quantum teleportation, quantum key distribution, quantum computing, high-dimensional quantum information, and other related fields.
Related papers
- Anticipating Decoherence: a Predictive Framework for Enhancing Coherence in Quantum Emitters [96.41185946460115]
We develop an anticipatory framework for forecasting and decoherence engineering in remote quantum emitters.<n>We show that a machine learning model trained on limited data can accurately forecast unseen spectral behavior.<n>These results pave the way for real-time decoherence engineering in scalable quantum systems.
arXiv Detail & Related papers (2025-08-04T17:23:14Z) - Photon-mediated interactions and dynamics of coherently driven quantum emitters in complex photonic environments [41.94295877935867]
Born-Markov master equations have been extensively employed in the description of quantum optical phenomena.<n>We benchmark this modeling approach for the quantum dynamics of the emitter pair against exact calculations based on a macroscopic field quantization formalism.<n>Our analysis reveals four distinct regimes of laser driving and frequency splitting that lead to markedly different levels of accuracy in the effective model.
arXiv Detail & Related papers (2025-08-01T09:38:07Z) - Avoided-crossings, degeneracies and Berry phases in the spectrum of quantum noise through analytic Bloch-Messiah decomposition [49.1574468325115]
"analytic Bloch-Messiah decomposition" provides approach for characterizing dynamics of quantum optical systems.<n>We show that avoided crossings arise naturally when a single parameter is varied, leading to hypersensitivity of the singular vectors.<n>We highlight the possibility of programming the spectral response of photonic systems through the deliberate design of avoided crossings.
arXiv Detail & Related papers (2025-04-29T13:14:15Z) - Nuclear responses with neural-network quantum states [37.902436796793616]
We introduce a variational Monte Carlo framework that combines neural-network quantum states with the Lorentz integral transform technique.<n>We focus on the photoabsorption cross section of light nuclei, where benchmarks against numerically exact techniques are available.
arXiv Detail & Related papers (2025-04-28T18:57:21Z) - Bridging classical and quantum approaches in optical polarimetry: Predicting polarization-entangled photon behavior in scattering environments [36.89950360824034]
We explore quantum-based optical polarimetry as a potential diagnostic tool for biological tissues.
We develop a theoretical and experimental framework to understand polarization-entangled photon behavior in scattering media.
arXiv Detail & Related papers (2024-11-09T10:17:47Z) - Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.<n>We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.<n>We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - Continuous-variable quantum optics and resource theory for ultrafast
semiconductor spectroscopy [0.0]
We focus on multichannel homodyne detection as a powerful tool to measure the quantum coherence and the full density matrix of a polariton system.
By monitoring the temporal decay of quantum coherence in the polariton condensate, we observe coherence times exceeding the nanosecond scale.
The combination of tailored resource quantifiers and ultrafast spectroscopy techniques presented here paves the way for future applications of quantum information technologies.
arXiv Detail & Related papers (2023-06-02T13:56:47Z) - Quantum non-Markovianity: Overview and recent developments [2.122752621320654]
In the current era of noisy intermediate-scale quantum (NISQ) devices, research in the theory of open system dynamics has a crucial role to play.
This review is to address the fundamental question of defining and characterizing memory effects -- broadly referred to as quantum non-Markovianity.
arXiv Detail & Related papers (2023-03-22T07:54:58Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Witnessing Light-Driven Entanglement using Time-Resolved Resonant
Inelastic X-Ray Scattering [8.180110565400524]
Characterizing and controlling entanglement in quantum materials is crucial for the development of next-generation quantum technologies.
We propose a systematic approach to quantify the time-dependent quantum Fisher information and entanglement depth of transient states of quantum materials.
Our work sets the stage for experimentally witnessing and controlling entanglement in light-driven quantum materials via ultrafast spectroscopic measurements.
arXiv Detail & Related papers (2022-09-06T08:13:15Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.