Bridging classical and quantum approaches in optical polarimetry: Predicting polarization-entangled photon behavior in scattering environments
- URL: http://arxiv.org/abs/2411.06134v1
- Date: Sat, 09 Nov 2024 10:17:47 GMT
- Title: Bridging classical and quantum approaches in optical polarimetry: Predicting polarization-entangled photon behavior in scattering environments
- Authors: Vira R. Besaga, Ivan V. Lopushenko, Oleksii Sieryi, Alexander Bykov, Frank Setzpfandt, Igor Meglinski,
- Abstract summary: We explore quantum-based optical polarimetry as a potential diagnostic tool for biological tissues.
We develop a theoretical and experimental framework to understand polarization-entangled photon behavior in scattering media.
- Score: 36.89950360824034
- License:
- Abstract: We explore quantum-based optical polarimetry as a potential diagnostic tool for biological tissues by developing a theoretical and experimental framework to understand polarization-entangled photon behavior in scattering media. We investigate the mathematical relationship between Wolf's coherency matrix in classical optics and the density matrix formalism of quantum mechanics which allows for the extension of classical Monte Carlo method to quantum states. The developed generalized Monte Carlo approach uniquely integrates the Bethe-Salpeter equation for classical scattering, the Jones vector formalism for polarization, and the density matrix approach for quantum state representation. Therefore, this unified framework can model both classical and quantum polarization states, handle multi-photon states, and account for varying degrees of entanglement. Additionally, it facilitates the prediction of quantum state evolution in scattering media based on classical optical principles. The validity of the computational model is experimentally confirmed through high-fidelity agreement between predicted and measured quantum state evolution in tissue-mimicking phantoms. This work bridges the gap between classical and quantum optical polarimetry by developing and validating a comprehensive theoretical framework that unifies these traditionally distinct domains, paving the way for future quantum-enhanced diagnostics of tissues and other turbid environments.
Related papers
- The multi-state geometry of shift current and polarization [44.99833362998488]
We employ quantum state projectors to develop an explicitly gauge-invariant formalism.
We provide a simple expression for the shift current that resolves its precise relation to the moments of electronic polarization.
We reveal its decomposition into the sum of the skewness of the occupied states and intrinsic multi-state geometry.
arXiv Detail & Related papers (2024-09-24T18:00:02Z) - Photon-resolved Floquet theory I: Full-Counting statistics of the driving field in Floquet systems [0.0]
Photon-resolved Floquet theory (PRFT) developed to predict the statistics of the photon flux between several coherent driving modes.
PRFT will pave the way for improved quantum sensing methods, for spectroscopic quantum sensing protocols, reflectometry in semiconductor nanostructures and other applications.
arXiv Detail & Related papers (2024-07-25T03:07:40Z) - Variational approach to light-matter interaction: Bridging quantum and semiclassical limits [0.0]
We present a time-dependent variational approach to simulate the dynamics of light-matter systems.
The variational approach is applicable to a variety of quantum models of light-matter interaction.
arXiv Detail & Related papers (2024-07-17T00:53:33Z) - Macroscopic quantum correlation using coherence manipulations of
polarization-path correlations of a continuous-wave laser [0.0]
A macroscopic quantum correlation is presented for coherence manipulations of polarization-path correlations of a continuous wave laser.
This feature opens the door to a new understanding of quantum mechanics beyond the microscopic regime for future classical optics-compatible quantum information.
arXiv Detail & Related papers (2023-08-08T06:31:11Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Estimating a fluctuating magnetic field with a continuously monitored
atomic ensemble [7.310488568715925]
We study the problem of estimating a time dependent magnetic field by continuous optical probing of an atomic ensemble.
We show how optical probing after time $t$ improves our estimate of the value of the magnetic field at time $t$.
arXiv Detail & Related papers (2020-06-09T21:23:01Z) - Emergence of the Born rule in quantum optics [0.0]
The Born rule provides a fundamental connection between theory and observation in quantum mechanics, yet its origin remains a mystery.
We consider this problem using only classical physics and the assumption of a quantum electrodynamic vacuum that is real rather than virtual.
The connection to observation is made via classical intensity threshold detectors that are used as a simple, deterministic model of photon detection.
arXiv Detail & Related papers (2020-04-19T02:24:22Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.