MalVol-25: A Diverse, Labelled and Detailed Volatile Memory Dataset for Malware Detection and Response Testing and Validation
- URL: http://arxiv.org/abs/2507.03993v1
- Date: Sat, 05 Jul 2025 10:45:45 GMT
- Title: MalVol-25: A Diverse, Labelled and Detailed Volatile Memory Dataset for Malware Detection and Response Testing and Validation
- Authors: Dipo Dunsin, Mohamed Chahine Ghanem, Eduardo Almeida Palmieri,
- Abstract summary: Existing datasets often lack diversity, comprehensive labelling, and the complexity necessary for effective machine learning and agentic AI training.<n>To fill this gap, we developed a systematic approach for generating a dataset that combines automated malware execution in controlled virtual environments with dynamic monitoring tools.<n>The resulting dataset comprises clean and infected memory snapshots across multiple malware families and operating systems, capturing detailed behavioural and environmental features.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the critical need for high-quality malware datasets that support advanced analysis techniques, particularly machine learning and agentic AI frameworks. Existing datasets often lack diversity, comprehensive labelling, and the complexity necessary for effective machine learning and agent-based AI training. To fill this gap, we developed a systematic approach for generating a dataset that combines automated malware execution in controlled virtual environments with dynamic monitoring tools. The resulting dataset comprises clean and infected memory snapshots across multiple malware families and operating systems, capturing detailed behavioural and environmental features. Key design decisions include applying ethical and legal compliance, thorough validation using both automated and manual methods, and comprehensive documentation to ensure replicability and integrity. The dataset's distinctive features enable modelling system states and transitions, facilitating RL-based malware detection and response strategies. This resource is significant for advancing adaptive cybersecurity defences and digital forensic research. Its scope supports diverse malware scenarios and offers potential for broader applications in incident response and automated threat mitigation.
Related papers
- Rethinking Data Protection in the (Generative) Artificial Intelligence Era [115.71019708491386]
We propose a four-level taxonomy that captures the diverse protection needs arising in modern (generative) AI models and systems.<n>Our framework offers a structured understanding of the trade-offs between data utility and control, spanning the entire AI pipeline.
arXiv Detail & Related papers (2025-07-03T02:45:51Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - SPECTRE: A Hybrid System for an Adaptative and Optimised Cyber Threats Detection, Response and Investigation in Volatile Memory [0.0]
This research introduces SPECTRE, a modular Cyber Incident Response System designed to enhance threat detection, investigation, and visualization.<n>Its capabilities safely replicate realistic attack scenarios, such as credential dumping and malicious process injections, for controlled experimentation.<n>SPECTRE advanced visualization techniques transform raw memory data into actionable insights, aiding Red, Blue and Purple teams in refining strategies and responding effectively to threats.
arXiv Detail & Related papers (2025-01-07T16:05:27Z) - Predicting Vulnerability to Malware Using Machine Learning Models: A Study on Microsoft Windows Machines [0.0]
This study addresses the need for effective malware detection strategies by leveraging Machine Learning (ML) techniques.<n>Our research aims to develop an advanced ML model that accurately predicts malware vulnerabilities based on the specific conditions of individual machines.
arXiv Detail & Related papers (2025-01-05T10:04:58Z) - Transfer Learning in Pre-Trained Large Language Models for Malware Detection Based on System Calls [3.5698678013121334]
This work presents a novel framework leveraging large language models (LLMs) to classify malware based on system call data.
Experiments with a dataset of over 1TB of system calls demonstrate that models with larger context sizes, such as BigBird and Longformer, achieve superior accuracy and F1-Score of approximately 0.86.
This approach shows significant potential for real-time detection in high-stakes environments, offering a robust solution to evolving cyber threats.
arXiv Detail & Related papers (2024-05-15T13:19:43Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
This study conducts a thorough examination of malware detection using machine learning techniques.
The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively.
arXiv Detail & Related papers (2024-03-04T17:22:43Z) - REEF: A Framework for Collecting Real-World Vulnerabilities and Fixes [40.401211102969356]
We propose an automated collecting framework REEF to collect REal-world vulnErabilities and Fixes from open-source repositories.
We develop a multi-language crawler to collect vulnerabilities and their fixes, and design metrics to filter for high-quality vulnerability-fix pairs.
Through extensive experiments, we demonstrate that our approach can collect high-quality vulnerability-fix pairs and generate strong explanations.
arXiv Detail & Related papers (2023-09-15T02:50:08Z) - TII-SSRC-23 Dataset: Typological Exploration of Diverse Traffic Patterns
for Intrusion Detection [0.5261718469769447]
Existing datasets often fall short, lacking the necessary diversity and alignment with the contemporary network environment.
This paper introduces TII-SSRC-23, a novel and comprehensive dataset designed to overcome these challenges.
arXiv Detail & Related papers (2023-09-14T05:23:36Z) - Realistic simulation of users for IT systems in cyber ranges [63.20765930558542]
We instrument each machine by means of an external agent to generate user activity.
This agent combines both deterministic and deep learning based methods to adapt to different environment.
We also propose conditional text generation models to facilitate the creation of conversations and documents.
arXiv Detail & Related papers (2021-11-23T10:53:29Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.