Stochastic Human Motion Prediction with Memory of Action Transition and Action Characteristic
- URL: http://arxiv.org/abs/2507.04062v1
- Date: Sat, 05 Jul 2025 14:57:37 GMT
- Title: Stochastic Human Motion Prediction with Memory of Action Transition and Action Characteristic
- Authors: Jianwei Tang, Hong Yang, Tengyue Chen, Jian-Fang Hu,
- Abstract summary: Action-driven human motion prediction aims to generate future motion sequences of a pre-defined target action.<n> generating smooth transition motions is hard due to the varying transition speeds of different actions.<n>The action characteristic is difficult to be learned because of the similarity of some actions.
- Score: 16.924373259722092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Action-driven stochastic human motion prediction aims to generate future motion sequences of a pre-defined target action based on given past observed sequences performing non-target actions. This task primarily presents two challenges. Firstly, generating smooth transition motions is hard due to the varying transition speeds of different actions. Secondly, the action characteristic is difficult to be learned because of the similarity of some actions. These issues cause the predicted results to be unreasonable and inconsistent. As a result, we propose two memory banks, the Soft-transition Action Bank (STAB) and Action Characteristic Bank (ACB), to tackle the problems above. The STAB stores the action transition information. It is equipped with the novel soft searching approach, which encourages the model to focus on multiple possible action categories of observed motions. The ACB records action characteristic, which produces more prior information for predicting certain actions. To fuse the features retrieved from the two banks better, we further propose the Adaptive Attention Adjustment (AAA) strategy. Extensive experiments on four motion prediction datasets demonstrate that our approach consistently outperforms the previous state-of-the-art. The demo and code are available at https://hyqlat.github.io/STABACB.github.io/.
Related papers
- ActionSink: Toward Precise Robot Manipulation with Dynamic Integration of Action Flow [93.00917887667234]
This paper introduces a novel robot manipulation framework, i.e., ActionSink, to pave the way toward precise action estimations.<n>As the name suggests, ActionSink reformulates the actions of robots as action-caused optical flows from videos, called "action flow"<n>Our framework outperformed prior SOTA on the LIBERO benchmark by a 7.9% success rate, and obtained nearly an 8% accuracy gain on the challenging long-horizon visual task LIBERO-Long.
arXiv Detail & Related papers (2025-08-05T08:46:17Z) - Bidirectional Decoding: Improving Action Chunking via Guided Test-Time Sampling [51.38330727868982]
We show how action chunking impacts the divergence between a learner and a demonstrator.<n>We propose Bidirectional Decoding (BID), a test-time inference algorithm that bridges action chunking with closed-loop adaptation.<n>Our method boosts the performance of two state-of-the-art generative policies across seven simulation benchmarks and two real-world tasks.
arXiv Detail & Related papers (2024-08-30T15:39:34Z) - Harnessing Temporal Causality for Advanced Temporal Action Detection [53.654457142657236]
We introduce CausalTAD, which combines causal attention and causal Mamba to achieve state-of-the-art performance on benchmarks.
We ranked 1st in the Action Recognition, Action Detection, and Audio-Based Interaction Detection tracks at the EPIC-Kitchens Challenge 2024, and 1st in the Moment Queries track at the Ego4D Challenge 2024.
arXiv Detail & Related papers (2024-07-25T06:03:02Z) - DiffAnt: Diffusion Models for Action Anticipation [12.022815981853071]
Anticipating future actions is inherently uncertain. Given an observed video segment containing ongoing actions, multiple subsequent actions can plausibly follow.
In this work, we rethink action anticipation from a generative view, employing diffusion models to capture different possible future actions.
Our code and trained models will be published on GitHub.
arXiv Detail & Related papers (2023-11-27T16:40:09Z) - Orientation-Aware Leg Movement Learning for Action-Driven Human Motion
Prediction [7.150292351809277]
Action-driven human motion prediction aims to forecast future human motion based on the observed sequence.
It requires modeling the smooth yet realistic transition between multiple action labels.
We generalize our trained in-betweening learning model on one dataset to two unseen large-scale motion datasets to produce natural transitions.
arXiv Detail & Related papers (2023-10-23T13:16:51Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - HumanMAC: Masked Motion Completion for Human Motion Prediction [62.279925754717674]
Human motion prediction is a classical problem in computer vision and computer graphics.
Previous effects achieve great empirical performance based on an encoding-decoding style.
In this paper, we propose a novel framework from a new perspective.
arXiv Detail & Related papers (2023-02-07T18:34:59Z) - Weakly-supervised Action Transition Learning for Stochastic Human Motion
Prediction [81.94175022575966]
We introduce the task of action-driven human motion prediction.
It aims to predict multiple plausible future motions given a sequence of action labels and a short motion history.
arXiv Detail & Related papers (2022-05-31T08:38:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.