Orientation-Aware Leg Movement Learning for Action-Driven Human Motion
Prediction
- URL: http://arxiv.org/abs/2310.14907v2
- Date: Tue, 6 Feb 2024 04:45:08 GMT
- Title: Orientation-Aware Leg Movement Learning for Action-Driven Human Motion
Prediction
- Authors: Chunzhi Gu, Chao Zhang, Shigeru Kuriyama
- Abstract summary: Action-driven human motion prediction aims to forecast future human motion based on the observed sequence.
It requires modeling the smooth yet realistic transition between multiple action labels.
We generalize our trained in-betweening learning model on one dataset to two unseen large-scale motion datasets to produce natural transitions.
- Score: 7.150292351809277
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The task of action-driven human motion prediction aims to forecast future
human motion based on the observed sequence while respecting the given action
label. It requires modeling not only the stochasticity within human motion but
the smooth yet realistic transition between multiple action labels. However,
the fact that most datasets do not contain such transition data complicates
this task. Existing work tackles this issue by learning a smoothness prior to
simply promote smooth transitions, yet doing so can result in unnatural
transitions especially when the history and predicted motions differ
significantly in orientations. In this paper, we argue that valid human motion
transitions should incorporate realistic leg movements to handle orientation
changes, and cast it as an action-conditioned in-betweening (ACB) learning task
to encourage transition naturalness. Because modeling all possible transitions
is virtually unreasonable, our ACB is only performed on very few selected
action classes with active gait motions, such as Walk or Run. Specifically, we
follow a two-stage forecasting strategy by first employing the motion diffusion
model to generate the target motion with a specified future action, and then
producing the in-betweening to smoothly connect the observation and prediction
to eventually address motion prediction. Our method is completely free from the
labeled motion transition data during training. To show the robustness of our
approach, we generalize our trained in-betweening learning model on one dataset
to two unseen large-scale motion datasets to produce natural transitions.
Extensive experimental evaluations on three benchmark datasets demonstrate that
our method yields the state-of-the-art performance in terms of visual quality,
prediction accuracy, and action faithfulness.
Related papers
- Past Movements-Guided Motion Representation Learning for Human Motion Prediction [0.0]
We propose a self-supervised learning framework designed to enhance motion representation.
The framework consists of two stages: first, the network is pretrained through the self-reconstruction of past sequences, and the guided reconstruction of future sequences based on past movements.
Our method reduces the average prediction errors by 8.8% across Human3.6, 3DPW, and AMASS datasets.
arXiv Detail & Related papers (2024-08-04T17:00:37Z) - TransFusion: A Practical and Effective Transformer-based Diffusion Model
for 3D Human Motion Prediction [1.8923948104852863]
We propose TransFusion, an innovative and practical diffusion-based model for 3D human motion prediction.
Our model leverages Transformer as the backbone with long skip connections between shallow and deep layers.
In contrast to prior diffusion-based models that utilize extra modules like cross-attention and adaptive layer normalization, we treat all inputs, including conditions, as tokens to create a more lightweight model.
arXiv Detail & Related papers (2023-07-30T01:52:07Z) - Learning Snippet-to-Motion Progression for Skeleton-based Human Motion
Prediction [14.988322340164391]
Existing Graph Convolutional Networks to achieve human motion prediction largely adopt a one-step scheme.
We observe that human motions have transitional patterns and can be split into snippets representative of each transition.
We propose a snippet-to-motion multi-stage framework that breaks motion prediction into sub-tasks easier to accomplish.
arXiv Detail & Related papers (2023-07-26T07:36:38Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - Weakly-supervised Action Transition Learning for Stochastic Human Motion
Prediction [81.94175022575966]
We introduce the task of action-driven human motion prediction.
It aims to predict multiple plausible future motions given a sequence of action labels and a short motion history.
arXiv Detail & Related papers (2022-05-31T08:38:07Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [32.50770614788775]
We learn a framework to learn the versatile motion prior, which models the inherent probability distribution of human motions.
For efficient prior representation learning, we propose a global orientation normalization to remove redundant environment information.
We then adopt a denoising training scheme to disentangle the environment information from input motion data in a learnable way.
arXiv Detail & Related papers (2021-11-25T13:24:44Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
We introduce a unified deep generative network for both diverse and controllable motion prediction.
Our experiments on two standard benchmark datasets, Human3.6M and HumanEva-I, demonstrate that our approach outperforms the state-of-the-art baselines in terms of both sample diversity and accuracy.
arXiv Detail & Related papers (2021-08-19T00:58:00Z) - Multi-level Motion Attention for Human Motion Prediction [132.29963836262394]
We study the use of different types of attention, computed at joint, body part, and full pose levels.
Our experiments on Human3.6M, AMASS and 3DPW validate the benefits of our approach for both periodical and non-periodical actions.
arXiv Detail & Related papers (2021-06-17T08:08:11Z) - History Repeats Itself: Human Motion Prediction via Motion Attention [81.94175022575966]
We introduce an attention-based feed-forward network that explicitly leverages the observation that human motion tends to repeat itself.
In particular, we propose to extract motion attention to capture the similarity between the current motion context and the historical motion sub-sequences.
Our experiments on Human3.6M, AMASS and 3DPW evidence the benefits of our approach for both periodical and non-periodical actions.
arXiv Detail & Related papers (2020-07-23T02:12:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.