論文の概要: Beyond Independent Passages: Adaptive Passage Combination Retrieval for Retrieval Augmented Open-Domain Question Answering
- arxiv url: http://arxiv.org/abs/2507.04069v1
- Date: Sat, 05 Jul 2025 15:10:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.002484
- Title: Beyond Independent Passages: Adaptive Passage Combination Retrieval for Retrieval Augmented Open-Domain Question Answering
- Title(参考訳): 独立パスを超えて: 検索用Adaptive Passage Combination Retrieval
- Authors: Ting-Wen Ko, Jyun-Yu Jiang, Pu-Jen Cheng,
- Abstract要約: Adaptive Passage Combination Retrieval (AdaPCR)は、ブラックボックスLMで応答するオープンドメイン質問のための新しいフレームワークである。
AdaPCRは、経路の組み合わせを検索と再ランクのための単位として考慮することで、通路間の依存関係を明示的にモデル化する。
- 参考スコア(独自算出の注目度): 7.468615741572889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external documents at inference time, enabling up-to-date knowledge access without costly retraining. However, conventional RAG methods retrieve passages independently, often leading to redundant, noisy, or insufficiently diverse context-particularly problematic - particularly problematic in noisy corpora and for multi-hop questions. To address this, we propose Adaptive Passage Combination Retrieval (AdaPCR), a novel framework for open-domain question answering with black-box LMs. AdaPCR explicitly models dependencies between passages by considering passage combinations as units for retrieval and reranking. It consists of a context-aware query reformulation using concatenated passages, and a reranking step trained with a predictive objective aligned with downstream answer likelihood. Crucially, AdaPCR adaptively selects the number of retrieved passages without additional stopping modules. Experiments across several QA benchmarks show that AdaPCR outperforms baselines, particularly in multi-hop reasoning, demonstrating the effectiveness of modeling inter-passage dependencies for improved retrieval.
- Abstract(参考訳): Retrieval-augmented Generation (RAG)は、外部文書を推論時に組み込むことで、大規模言語モデル(LLM)を強化する。
しかしながら、従来のRAG法は、しばしば冗長性、雑音性、あるいは不十分な状況、特にノイズの多いコーパスやマルチホップの質問に対して、独立した経路を検索する。
そこで我々は,ブラックボックスLMを用いたオープンドメイン質問応答のための新しいフレームワークであるAdaptive Passage Combination Retrieval (AdaPCR)を提案する。
AdaPCRは、経路の組み合わせを検索と再ランクのための単位として考慮することで、通路間の依存関係を明示的にモデル化する。
コンカレントパスを用いたコンテクスト対応クエリ再構成と、下流の回答可能性に合わせた予測目標でトレーニングされたリグレードステップで構成されている。
重要なことに、AdaPCRは追加の停止モジュールなしで検索されたパスの数を適応的に選択する。
いくつかのQAベンチマークでの実験では、AdaPCRはベースライン、特にマルチホップ推論において、検索を改善するためにパス間の依存関係をモデル化することの有効性を実証している。
関連論文リスト
- Question Decomposition for Retrieval-Augmented Generation [2.6409776648054764]
本稿では疑問分解をサブクエストに組み込んだRAGパイプラインを提案する。
補間的な文書を効果的に組み立てる一方で、再ランク付けによってノイズが減少することを示す。
再ランク自体は標準的なものであるが、LLMによる質問分解と既製のクロスエンコーダのペアリングは、マルチホップ質問の検索ギャップを橋渡しすることを示す。
論文 参考訳(メタデータ) (2025-07-01T01:01:54Z) - QPaug: Question and Passage Augmentation for Open-Domain Question Answering of LLMs [5.09189220106765]
オープンドメイン問合せタスクのための大規模言語モデル(LLM)を介してQPaug(Q and passage augmentation)と呼ばれるシンプルで効率的な手法を提案する。
実験の結果,QPaugは従来の最先端技術よりも優れており,既存のRAG法よりも大きな性能向上を実現していることがわかった。
論文 参考訳(メタデータ) (2024-06-20T12:59:27Z) - Passage-specific Prompt Tuning for Passage Reranking in Question Answering with Large Language Models [11.716595438057997]
オープンドメイン質問応答(PSPT)における再ランク付けのためのパス固有プロンプトチューニングを提案する。
PSPTは、学習可能なパス固有のソフトプロンプトを微調整するパラメータ効率の手法である。
我々は,Llama-2-chat-7Bモデルを用いた3つの公開領域質問応答データセットの広範な実験を行った。
論文 参考訳(メタデータ) (2024-05-31T07:43:42Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z) - Modeling Uncertainty and Using Post-fusion as Fallback Improves Retrieval Augmented Generation with LLMs [80.74263278847063]
検索されたパスと大きな言語モデル(LLM)の統合は、オープンドメインの質問応答の改善に大きく貢献している。
本稿では,検索したパスをLLMと組み合わせて回答生成を向上させる方法について検討する。
論文 参考訳(メタデータ) (2023-08-24T05:26:54Z) - Joint Passage Ranking for Diverse Multi-Answer Retrieval [56.43443577137929]
質問に対する複数の異なる回答をカバーするために、パスの取得を必要とする探索不足の問題であるマルチアンサー検索について検討する。
モデルが別の有効な答えを逃す費用で同じ答えを含む通路を繰り返すべきではないので、このタスクは、検索された通路の共同モデリングを必要とします。
本稿では,再順位に着目したジョイントパス検索モデルであるJPRを紹介する。
回収された通路の合同確率をモデル化するために、JPRは、新しい訓練および復号アルゴリズムを備えた通路のシーケンスを選択する自動回帰リタイナを利用する。
論文 参考訳(メタデータ) (2021-04-17T04:48:36Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
オープンドメインの問に答える統合QAフレームワークを提案する。
提案手法は,シングルホップおよびマルチホップのオープンドメインQAデータセットにおいて,最先端技術に匹敵する性能を継続的に達成する。
論文 参考訳(メタデータ) (2020-09-16T04:31:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。