論文の概要: Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity
- arxiv url: http://arxiv.org/abs/2403.14403v2
- Date: Thu, 28 Mar 2024 06:45:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 20:23:28.521521
- Title: Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity
- Title(参考訳): Adaptive-RAG:質問複雑度による検索型大規模言語モデルへの適応学習
- Authors: Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, Jong C. Park,
- Abstract要約: Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
- 参考スコア(独自算出の注目度): 59.57065228857247
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Retrieval-Augmented Large Language Models (LLMs), which incorporate the non-parametric knowledge from external knowledge bases into LLMs, have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA). However, even though there are various approaches dealing with queries of different complexities, they either handle simple queries with unnecessary computational overhead or fail to adequately address complex multi-step queries; yet, not all user requests fall into only one of the simple or complex categories. In this work, we propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs from the simplest to the most sophisticated ones based on the query complexity. Also, this selection process is operationalized with a classifier, which is a smaller LM trained to predict the complexity level of incoming queries with automatically collected labels, obtained from actual predicted outcomes of models and inherent inductive biases in datasets. This approach offers a balanced strategy, seamlessly adapting between the iterative and single-step retrieval-augmented LLMs, as well as the no-retrieval methods, in response to a range of query complexities. We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems, compared to relevant baselines including the adaptive retrieval approaches. Code is available at: https://github.com/starsuzi/Adaptive-RAG.
- Abstract(参考訳): 外部知識ベースからの非パラメトリック知識をLLMに組み込んだ検索型大規模言語モデル (LLM) は,質問回答 (QA) などのタスクにおいて,応答精度を高めるための有望なアプローチとして登場した。
しかし、異なる複雑さのクエリを扱う様々なアプローチがあるにもかかわらず、不要な計算オーバーヘッドを伴う単純なクエリを扱うか、複雑なマルチステップクエリに適切に対処できないかのいずれかである。
本稿では,クエリの複雑さに基づいて,最も単純なものから最も洗練されたものまで,最も適切な(検索可能な)LLM戦略を動的に選択できる,適応型QAフレームワークを提案する。
また、この選択プロセスは、データセットの実際の予測結果と固有の帰納バイアスから得られる、自動収集されたラベルによる入ってくるクエリの複雑さレベルを予測するために訓練された、より小さなLMの分類器で操作される。
このアプローチは、一連のクエリの複雑さに対応するため、反復的および単一ステップの検索拡張LDMと非検索的手法をシームレスに適応するバランスのとれた戦略を提供する。
我々は,複数のクエリの複雑さを網羅したオープンドメインQAデータセットの集合上でモデルを検証し,適応的検索手法を含む関連するベースラインと比較して,QAシステムの全体的な効率性と精度を向上させることを示す。
コードは、https://github.com/starsuzi/Adaptive-RAG.comで入手できる。
関連論文リスト
- mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
マルチモーダル検索拡張生成(mRAG)はMLLMに包括的で最新の知識を提供するために自然に導入されている。
我々は、適応的検索と有用な情報ローカライゼーションを実現する textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) という新しいフレームワークを提案する。
mR$2$AG は INFOSEEK と Encyclopedic-VQA の最先端MLLM を著しく上回る
論文 参考訳(メタデータ) (2024-11-22T16:15:50Z) - SRSA: A Cost-Efficient Strategy-Router Search Agent for Real-world Human-Machine Interactions [3.5725872564627785]
現実の状況では、ユーザーはしばしばコンテキストと高度にパーソナライズされたクエリをチャットボットに入力する。
これまでの研究は、人間と機械の対話のシナリオに特に焦点を絞ってはいなかった。
これらのギャップに対処するために、戦略ベース検索エージェント(SRSA)を提案する。
SRSAは、異なるクエリを適切な検索戦略にルーティングし、よりきめ細かいシリアル検索により、比較的低コストで高品質な結果を得ることができる。
論文 参考訳(メタデータ) (2024-11-21T20:41:55Z) - Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
知識グラフクエリ埋め込み(KGQE)は、不完全なKGに対する複雑な推論のために、低次元KG空間に一階論理(FOL)クエリを埋め込むことを目的としている。
近年の研究では、FOLクエリの論理的セマンティクスをよりよく捉えるために、さまざまな外部情報(エンティティタイプや関係コンテキストなど)を統合している。
コードのようなクエリ命令から遅延クエリパターンをキャプチャする効果的なクエリ命令解析(QIPP)を提案する。
論文 参考訳(メタデータ) (2024-10-27T03:18:52Z) - AQA: Adaptive Question Answering in a Society of LLMs via Contextual Multi-Armed Bandit [59.10281630985958]
質問応答(QA)では、異なる質問を異なる回答戦略で効果的に扱うことができる。
本稿では,各質問に対して最適なQA戦略を適応的に選択する動的手法を提案する。
提案手法は,複数のモジュールを持つQAシステムの適応的オーケストレーションに有効であることを示す。
論文 参考訳(メタデータ) (2024-09-20T12:28:18Z) - GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
我々は,多種多様な意図を適応的に捉えるための生成クラスタリング・改革フレームワークGenCRFを提案する。
我々はGenCRFが,nDCG@10で従来のクエリ修正SOTAを最大12%上回り,最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-09-17T05:59:32Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
大規模言語モデル(LLM)は、現実世界のアプリケーションで印象的な機能を示している。
これらの卓越した作品の品質は、パフォーマンスに大きな影響を与えます。
既存の方法は、先行注文がパフォーマンスに与える影響を適切に説明できない。
論文 参考訳(メタデータ) (2024-05-25T08:23:05Z) - Meta Operator for Complex Query Answering on Knowledge Graphs [58.340159346749964]
我々は、異なる複雑なクエリタイプではなく、異なる論理演算子型が一般化性を向上させる鍵であると主張する。
本稿では,メタ演算子を限られたデータで学習し,様々な複雑なクエリの演算子のインスタンスに適応するメタ学習アルゴリズムを提案する。
実験結果から,メタオペレータの学習は,従来のCQAモデルやメタCQAモデルよりも効果的であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T08:54:25Z) - Type-based Neural Link Prediction Adapter for Complex Query Answering [2.1098688291287475]
本稿では,タイプベースエンティティ関係グラフを構成する新しいモデルであるTypEベースのニューラルリンク予測アダプタ(TENLPA)を提案する。
型情報と複雑な論理的クエリを効果的に結合するために,適応学習機構を導入する。
3つの標準データセットの実験により、TENLPAモデルが複雑なクエリ応答における最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-01-29T10:54:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。