Towards Accurate and Efficient 3D Object Detection for Autonomous Driving: A Mixture of Experts Computing System on Edge
- URL: http://arxiv.org/abs/2507.04123v2
- Date: Tue, 22 Jul 2025 01:29:09 GMT
- Title: Towards Accurate and Efficient 3D Object Detection for Autonomous Driving: A Mixture of Experts Computing System on Edge
- Authors: Linshen Liu, Boyan Su, Junyue Jiang, Guanlin Wu, Cong Guo, Ceyu Xu, Hao Frank Yang,
- Abstract summary: This paper presents an optimal computing system designed for autonomous vehicles (AVs) that simultaneously achieves low-latency and high-accuracy 3D object detection.<n>By effectively fusing LiDAR and camera data, the system leverages the complementary strengths of sparse 3D point clouds and dense 2D images to generate robust multimodal representations.
- Score: 2.372616758549089
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents Edge-based Mixture of Experts (MoE) Collaborative Computing (EMC2), an optimal computing system designed for autonomous vehicles (AVs) that simultaneously achieves low-latency and high-accuracy 3D object detection. Unlike conventional approaches, EMC2 incorporates a scenario-aware MoE architecture specifically optimized for edge platforms. By effectively fusing LiDAR and camera data, the system leverages the complementary strengths of sparse 3D point clouds and dense 2D images to generate robust multimodal representations. To enable this, EMC2 employs an adaptive multimodal data bridge that performs multi-scale preprocessing on sensor inputs, followed by a scenario-aware routing mechanism that dynamically dispatches features to dedicated expert models based on object visibility and distance. In addition, EMC2 integrates joint hardware-software optimizations, including hardware resource utilization optimization and computational graph simplification, to ensure efficient and real-time inference on resource-constrained edge devices. Experiments on open-source benchmarks clearly show the EMC2 advancements as an end-to-end system. On the KITTI dataset, it achieves an average accuracy improvement of 3.58% and a 159.06% inference speedup compared to 15 baseline methods on Jetson platforms, with similar performance gains on the nuScenes dataset, highlighting its capability to advance reliable, real-time 3D object detection tasks for AVs. The official implementation is available at https://github.com/LinshenLiu622/EMC2.
Related papers
- DIMM: Decoupled Multi-hierarchy Kalman Filter for 3D Object Tracking [50.038098341549095]
State estimation is challenging for 3D object tracking with high maneuverability.<n>We propose a novel framework, DIMM, to effectively combine estimates from different motion models in each direction.<n>DIMM significantly improves the tracking accuracy of existing state estimation methods by 31.61%99.23%.
arXiv Detail & Related papers (2025-05-18T10:12:41Z) - LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving [52.83707400688378]
LargeAD is a versatile and scalable framework designed for large-scale 3D pretraining across diverse real-world driving datasets.<n>Our framework leverages VFMs to extract semantically rich superpixels from 2D images, which are aligned with LiDAR point clouds to generate high-quality contrastive samples.<n>Our approach delivers significant performance improvements over state-of-the-art methods in both linear probing and fine-tuning tasks for both LiDAR-based segmentation and object detection.
arXiv Detail & Related papers (2025-01-07T18:59:59Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection [28.319440934322728]
MV2DFusion is a multi-modal detection framework that integrates the strengths of both worlds through an advanced query-based fusion mechanism.<n>Our framework's flexibility allows it to integrate with any image and point cloud-based detectors, showcasing its adaptability and potential for future advancements.
arXiv Detail & Related papers (2024-08-12T06:46:05Z) - E2E-MFD: Towards End-to-End Synchronous Multimodal Fusion Detection [21.185032466325737]
We introduce E2E-MFD, a novel end-to-end algorithm for multimodal fusion detection.<n>E2E-MFD streamlines the process, achieving high performance with a single training phase.<n>Our extensive testing on multiple public datasets reveals E2E-MFD's superior capabilities.
arXiv Detail & Related papers (2024-03-14T12:12:17Z) - GOOD: General Optimization-based Fusion for 3D Object Detection via
LiDAR-Camera Object Candidates [10.534984939225014]
3D object detection serves as the core basis of the perception tasks in autonomous driving.
Good is a general optimization-based fusion framework that can achieve satisfying detection without training additional models.
Experiments on both nuScenes and KITTI datasets are carried out and the results show that GOOD outperforms by 9.1% on mAP score compared with PointPillars.
arXiv Detail & Related papers (2023-03-17T07:05:04Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
We introduce a simple, efficient, and effective two-stage detector, termed as Ret3D.
At the core of Ret3D is the utilization of novel intra-frame and inter-frame relation modules.
With negligible extra overhead, Ret3D achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-08-18T03:48:58Z) - DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on
Camera-LiDAR Fusion with Deep Association [8.34219107351442]
This paper proposes a robust camera-LiDAR fusion-based MOT method that achieves a good trade-off between accuracy and speed.
Our proposed method presents obvious advantages over the state-of-the-art MOT methods in terms of both tracking accuracy and processing speed.
arXiv Detail & Related papers (2022-02-24T13:36:29Z) - Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for
Autonomous Driving [6.396288020763144]
Multi-object tracking (MOT) with camera-LiDAR fusion demands accurate results of object detection, affinity computation and data association in real time.
This paper presents an efficient multi-modal MOT framework with online joint detection and tracking schemes and robust data association for autonomous driving applications.
arXiv Detail & Related papers (2021-08-10T11:17:05Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - Multi-scale Interaction for Real-time LiDAR Data Segmentation on an
Embedded Platform [62.91011959772665]
Real-time semantic segmentation of LiDAR data is crucial for autonomously driving vehicles.
Current approaches that operate directly on the point cloud use complex spatial aggregation operations.
We propose a projection-based method, called Multi-scale Interaction Network (MINet), which is very efficient and accurate.
arXiv Detail & Related papers (2020-08-20T19:06:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.