Hijacking JARVIS: Benchmarking Mobile GUI Agents against Unprivileged Third Parties
- URL: http://arxiv.org/abs/2507.04227v1
- Date: Sun, 06 Jul 2025 03:31:36 GMT
- Title: Hijacking JARVIS: Benchmarking Mobile GUI Agents against Unprivileged Third Parties
- Authors: Guohong Liu, Jialei Ye, Jiacheng Liu, Yuanchun Li, Wei Liu, Pengzhi Gao, Jian Luan, Yunxin Liu,
- Abstract summary: We present the first systematic investigation into the vulnerabilities of mobile GUI agents.<n>We introduce a scalable attack simulation framework AgentHazard, which enables flexible and targeted modifications of screen content.<n>We develop a benchmark suite comprising both a dynamic task execution environment and a static dataset of attack scenarios.<n>Our findings reveal that all examined agents are significantly influenced by misleading third-party content.
- Score: 19.430061128447022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile GUI agents are designed to autonomously execute diverse device-control tasks by interpreting and interacting with mobile screens. Despite notable advancements, their resilience in real-world scenarios where screen content may be partially manipulated by untrustworthy third parties remains largely unexplored. Owing to their black-box and autonomous nature, these agents are vulnerable to manipulations that could compromise user devices. In this work, we present the first systematic investigation into the vulnerabilities of mobile GUI agents. We introduce a scalable attack simulation framework AgentHazard, which enables flexible and targeted modifications of screen content within existing applications. Leveraging this framework, we develop a comprehensive benchmark suite comprising both a dynamic task execution environment and a static dataset of vision-language-action tuples, totaling over 3,000 attack scenarios. The dynamic environment encompasses 58 reproducible tasks in an emulator with various types of hazardous UI content, while the static dataset is constructed from 210 screenshots collected from 14 popular commercial apps. Importantly, our content modifications are designed to be feasible for unprivileged third parties. We evaluate 7 widely-used mobile GUI agents and 5 common backbone models using our benchmark. Our findings reveal that all examined agents are significantly influenced by misleading third-party content (with an average misleading rate of 28.8% in human-crafted attack scenarios) and that their vulnerabilities are closely linked to the employed perception modalities and backbone LLMs. Furthermore, we assess training-based mitigation strategies, highlighting both the challenges and opportunities for enhancing the robustness of mobile GUI agents. Our code and data will be released at https://agenthazard.github.io.
Related papers
- VisualTrap: A Stealthy Backdoor Attack on GUI Agents via Visual Grounding Manipulation [68.30039719980519]
This work reveals that the visual grounding of GUI agent-mapping textual plans to GUI elements can introduce vulnerabilities.<n>With backdoor attack targeting visual grounding, the agent's behavior can be compromised even when given correct task-solving plans.<n>We propose VisualTrap, a method that can hijack the grounding by misleading the agent to locate textual plans to trigger locations instead of the intended targets.
arXiv Detail & Related papers (2025-07-09T14:36:00Z) - MobileGUI-RL: Advancing Mobile GUI Agent through Reinforcement Learning in Online Environment [63.62778707277929]
MobileGUI-RL is a scalable framework that trains GUI agent in online environment.<n>It synthesizes a curriculum of learnable tasks through self-exploration and filtering.<n>It adapts GRPO to GUI navigation with trajectory-aware advantages and composite rewards.
arXiv Detail & Related papers (2025-07-08T07:07:53Z) - Screen Hijack: Visual Poisoning of VLM Agents in Mobile Environments [61.808686396077036]
We present GHOST, the first clean-label backdoor attack specifically designed for mobile agents built upon vision-language models (VLMs)<n>Our method manipulates only the visual inputs of a portion of the training samples without altering their corresponding labels or instructions.<n>We evaluate our method across six real-world Android apps and three VLM architectures adapted for mobile use.
arXiv Detail & Related papers (2025-06-16T08:09:32Z) - The Obvious Invisible Threat: LLM-Powered GUI Agents' Vulnerability to Fine-Print Injections [21.322212760700957]
A Large Language Model (LLM) powered GUI agent is a specialized autonomous system that performs tasks on the user's behalf according to high-level instructions.<n>To complete real-world tasks, such as filling forms or booking services, GUI agents often need to process and act on sensitive user data.<n>These attacks often exploit the discrepancy between visual saliency for agents and human users.
arXiv Detail & Related papers (2025-04-15T15:21:09Z) - Towards Trustworthy GUI Agents: A Survey [64.6445117343499]
This survey examines the trustworthiness of GUI agents in five critical dimensions.<n>We identify major challenges such as vulnerability to adversarial attacks, cascading failure modes in sequential decision-making.<n>As GUI agents become more widespread, establishing robust safety standards and responsible development practices is essential.
arXiv Detail & Related papers (2025-03-30T13:26:00Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs)
In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases.
arXiv Detail & Related papers (2024-06-26T05:36:23Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.<n>We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.<n>We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - MobileAgent: enhancing mobile control via human-machine interaction and
SOP integration [0.0]
Large Language Models (LLMs) are now capable of automating mobile device operations for users.
Privacy concerns related to personalized user data arise during mobile operations, requiring user confirmation.
We have designed interactive tasks between agents and humans to identify sensitive information and align with personalized user needs.
Our approach is evaluated on the new device control benchmark AitW, which encompasses 30K unique instructions across multi-step tasks.
arXiv Detail & Related papers (2024-01-04T03:44:42Z) - Mobile-Env: Building Qualified Evaluation Benchmarks for LLM-GUI Interaction [28.53259866617677]
We introduce Mobile-Env, a comprehensive toolkit tailored for creating GUI benchmarks in the Android mobile environment.
We collect an open-world task set across various real-world apps and a fixed world set, WikiHow, which captures a significant amount of dynamic online contents.
Our findings reveal that even advanced models struggle with tasks that are relatively simple for humans.
arXiv Detail & Related papers (2023-05-14T12:31:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.