論文の概要: Inertial Quadratic Majorization Minimization with Application to Kernel Regularized Learning
- arxiv url: http://arxiv.org/abs/2507.04247v1
- Date: Sun, 06 Jul 2025 05:17:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.084604
- Title: Inertial Quadratic Majorization Minimization with Application to Kernel Regularized Learning
- Title(参考訳): Inertial Quadratic Majorization Minimizationとカーネル正規化学習への応用
- Authors: Qiang Heng, Caixing Wang,
- Abstract要約: 外部補間(QMME)フレームワークを導入し,その逐次収束特性を確立する。
実効性を示すために,大規模カーネル正規化学習問題にQMMEを適用した。
- 参考スコア(独自算出の注目度): 1.0282274843007797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: First-order methods in convex optimization offer low per-iteration cost but often suffer from slow convergence, while second-order methods achieve fast local convergence at the expense of costly Hessian inversions. In this paper, we highlight a middle ground: minimizing a quadratic majorant with fixed curvature at each iteration. This strategy strikes a balance between per-iteration cost and convergence speed, and crucially allows the reuse of matrix decompositions, such as Cholesky or spectral decompositions, across iterations and varying regularization parameters. We introduce the Quadratic Majorization Minimization with Extrapolation (QMME) framework and establish its sequential convergence properties under standard assumptions. The new perspective of our analysis is to center the arguments around the induced norm of the curvature matrix $H$. To demonstrate practical advantages, we apply QMME to large-scale kernel regularized learning problems. In particular, we propose a novel Sylvester equation modelling technique for kernel multinomial regression. In Julia-based experiments, QMME compares favorably against various established first- and second-order methods. Furthermore, we demonstrate that our algorithms complement existing kernel approximation techniques through more efficiently handling sketching matrices with large projection dimensions. Our numerical experiments and real data analysis are available and fully reproducible at https://github.com/qhengncsu/QMME.jl.
- Abstract(参考訳): 凸最適化における一階法は、1点当たりのコストを低くするが、しばしば緩やかな収束に悩まされる一方、二階法はコストのかかるヘッセン反転を犠牲にして高速な局所収束を達成する。
本稿では,各反復における定曲率の2次行列行列の最小化について述べる。
この戦略は、氷点当たりのコストと収束速度のバランスを崩し、反復と様々な正規化パラメータをまたいで、チョレスキーやスペクトル分解のような行列分解の再利用を決定的に可能にしている。
外部補間(QMME)フレームワークによる二次偏極最小化を導入し,その逐次収束特性を標準仮定で確立する。
我々の分析の新しい視点は、曲率行列$H$の誘導ノルムに関する議論の中心となることである。
実効性を示すために,大規模カーネル正規化学習問題にQMMEを適用した。
特に,カーネル多項回帰のための新しいシルベスター方程式モデリング手法を提案する。
ジュリアに基づく実験では、QMMEは様々な確立された一階法と二階法と比較して好意的に比較される。
さらに,提案アルゴリズムは,スケッチ行列を大きな投影次元でより効率的に処理することで,既存のカーネル近似手法を補完することを示した。
数値実験と実データ解析はhttps://github.com/qhengncsu/QMME.jlで利用可能である。
関連論文リスト
- The Stochastic Conjugate Subgradient Algorithm For Kernel Support Vector Machines [1.738375118265695]
本稿では,カーネルサポートベクトルマシン(SVM)に特化して設計された革新的な手法を提案する。
イテレーション毎のイテレーションを高速化するだけでなく、従来のSFO技術と比較して収束度も向上する。
実験の結果,提案アルゴリズムはSFO法のスケーラビリティを維持できるだけでなく,潜在的に超越していることが示された。
論文 参考訳(メタデータ) (2024-07-30T17:03:19Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Simplifying Momentum-based Positive-definite Submanifold Optimization
with Applications to Deep Learning [24.97120654216651]
部分多様体上の運動量を持つ難しい微分方程式の解法を示す。
我々はリーマン正規座標の一般化版を提案する。
我々は,行列乗算のみを用いることで,構造化共分散の既存手法を単純化し,低精度のディープラーニングのための行列非逆2textnd$ordersを開発する。
論文 参考訳(メタデータ) (2023-02-20T03:31:11Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
滑らかで非滑らかな項の和として形成される凸有限サム目標を最小化するための条件勾配法(CGM)を提案する。
提案手法は, 平均勾配 (SAG) 推定器を備え, 1回に1回のサンプルしか必要としないが, より高度な分散低減技術と同等の高速収束速度を保証できる。
論文 参考訳(メタデータ) (2022-02-26T19:10:48Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z) - On Distributed Non-convex Optimization: Projected Subgradient Method For
Weakly Convex Problems in Networks [13.385373310554327]
Moreau subgradient 法は、機械学習における線形シャープネス問題を収束させる。
理論的保証を伴う下位段階法の分散実装を提案する。
論文 参考訳(メタデータ) (2020-04-28T01:01:49Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。