Just Enough Shifts: Mitigating Over-Refusal in Aligned Language Models with Targeted Representation Fine-Tuning
- URL: http://arxiv.org/abs/2507.04250v1
- Date: Sun, 06 Jul 2025 05:47:04 GMT
- Title: Just Enough Shifts: Mitigating Over-Refusal in Aligned Language Models with Targeted Representation Fine-Tuning
- Authors: Mahavir Dabas, Si Chen, Charles Fleming, Ming Jin, Ruoxi Jia,
- Abstract summary: ACTOR minimizes over-refusals by leveraging internal activation patterns from diverse queries.<n>ACTOR precisely identifies and adjusts the activation components that trigger refusals, providing stronger control over the refusal mechanism.
- Score: 19.823784666021822
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Safety alignment is crucial for large language models (LLMs) to resist malicious instructions but often results in over-refusals, where benign prompts are unnecessarily rejected, impairing user experience and model utility. We introduce ACTOR (Activation-Based Training for Over-Refusal Reduction), a robust and compute- and data-efficient training framework that minimizes over-refusals by leveraging internal activation patterns from diverse queries. ACTOR precisely identifies and adjusts the activation components that trigger refusals, providing stronger control over the refusal mechanism. By fine-tuning only a single model layer, ACTOR effectively reduces over-refusals across multiple benchmarks while maintaining the model's ability to handle harmful queries and preserve overall utility.
Related papers
- Robust Anti-Backdoor Instruction Tuning in LVLMs [53.766434746801366]
We introduce a lightweight, certified-agnostic defense framework for large visual language models (LVLMs)<n>Our framework finetunes only adapter modules and text embedding layers under instruction tuning.<n>Experiments against seven attacks on Flickr30k and MSCOCO demonstrate that ours reduces their attack success rate to nearly zero.
arXiv Detail & Related papers (2025-06-04T01:23:35Z) - A Novel Generative Model with Causality Constraint for Mitigating Biases in Recommender Systems [20.672668625179526]
Latent confounding bias can obscure the true causal relationship between user feedback and item exposure.<n>We propose a novel generative framework called Latent Causality Constraints for Debiasing representation learning in Recommender Systems.
arXiv Detail & Related papers (2025-05-22T14:09:39Z) - CTRAP: Embedding Collapse Trap to Safeguard Large Language Models from Harmful Fine-Tuning [12.293101110323722]
Fine-tuning-as-a-service exposes models to harmful fine-tuning attacks.<n>We propose a paradigm shift: instead of selective removal, we advocate for inducing model collapse.<n>This collapse directly neutralizes the very general capabilities that attackers exploit.
arXiv Detail & Related papers (2025-05-22T11:47:08Z) - Patterns and Mechanisms of Contrastive Activation Engineering [0.374490703387131]
CAE has the potential to introduce a new paradigm of flexible, task-specific behavior tuning.<n>We analyze the performance of CAE in in in-distribution, out-of-distribution settings, evaluate drawbacks, and begin to develop comprehensive guidelines for its effective deployment.
arXiv Detail & Related papers (2025-05-06T05:15:12Z) - AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning [61.28113271728859]
RAG has become a widely adopted paradigm for enabling knowledge-grounded large language models (LLMs)<n>Standard RAG pipelines often fail to ensure that model reasoning remains consistent with the evidence retrieved, leading to factual inconsistencies or unsupported conclusions.<n>In this work, we reinterpret RAG as Retrieval-Augmented Reasoning and identify a central but underexplored problem: textitReasoning Misalignment.
arXiv Detail & Related papers (2025-04-21T04:56:47Z) - UPCORE: Utility-Preserving Coreset Selection for Balanced Unlearning [57.081646768835704]
User specifications or legal frameworks often require information to be removed from pretrained models, including large language models (LLMs)<n>This requires deleting or "forgetting" a set of data points from an already-trained model, which typically degrades its performance on other data points.<n>We propose UPCORE, a method-agnostic data selection framework for mitigating collateral damage during unlearning.
arXiv Detail & Related papers (2025-02-20T22:51:10Z) - PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery [11.20326903218271]
Post-training techniques such as instruction tuning are commonly employed to recover model performance.<n>However, some irrelevant instructions may also introduce negative effects to model capacity recovery.<n>We propose textbfPost-training dtextbfAta textbfSelection method for textbfEfficient pruned large language model textbfRecovery (textbfPASER)
arXiv Detail & Related papers (2025-02-18T07:11:08Z) - CROW: Eliminating Backdoors from Large Language Models via Internal Consistency Regularization [7.282200564983221]
Large Language Models (LLMs) are vulnerable to backdoor attacks that manipulate outputs via hidden triggers.<n>We propose Internal Consistency Regularization (CROW), a defense leveraging the observation that backdoored models exhibit unstable layer-wise hidden representations when triggered.<n>CROW enforces consistency across layers via adversarial perturbations and regularization during finetuning, neutralizing backdoors without requiring clean reference models or trigger knowledge--only a small clean dataset.
arXiv Detail & Related papers (2024-11-18T07:52:12Z) - Model Reprogramming Outperforms Fine-tuning on Out-of-distribution Data in Text-Image Encoders [56.47577824219207]
In this paper, we unveil the hidden costs associated with intrusive fine-tuning techniques.
We introduce a new model reprogramming approach for fine-tuning, which we name Reprogrammer.
Our empirical evidence reveals that Reprogrammer is less intrusive and yields superior downstream models.
arXiv Detail & Related papers (2024-03-16T04:19:48Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
We develop textbfInferAligner, a novel inference-time alignment method that utilizes cross-model guidance for harmlessness alignment.
Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics.
It significantly diminishes the Attack Success Rate (ASR) of both harmful instructions and jailbreak attacks, while maintaining almost unchanged performance in downstream tasks.
arXiv Detail & Related papers (2024-01-20T10:41:03Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.