PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery
- URL: http://arxiv.org/abs/2502.12594v2
- Date: Fri, 23 May 2025 06:20:09 GMT
- Title: PASER: Post-Training Data Selection for Efficient Pruned Large Language Model Recovery
- Authors: Bowei He, Lihao Yin, Hui-Ling Zhen, Xiaokun Zhang, Mingxuan Yuan, Chen Ma,
- Abstract summary: Post-training techniques such as instruction tuning are commonly employed to recover model performance.<n>However, some irrelevant instructions may also introduce negative effects to model capacity recovery.<n>We propose textbfPost-training dtextbfAta textbfSelection method for textbfEfficient pruned large language model textbfRecovery (textbfPASER)
- Score: 11.20326903218271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model pruning is an effective approach for compressing large language models (LLMs). However, this process often leads to significant degradation of model capabilities. While post-training techniques such as instruction tuning are commonly employed to recover model performance, existing methods often overlook the uneven deterioration of model capabilities and incur high computational costs. Moreover, some irrelevant instructions may also introduce negative effects to model capacity recovery. To address these challenges, we propose the \textbf{P}ost-training d\textbf{A}ta \textbf{S}election method for \textbf{E}fficient pruned large language model \textbf{R}ecovery (\textbf{PASER}). PASER aims to identify instructions to recover the most compromised model capacities with a certain data budget. Our approach first applies manifold learning and spectral clustering to group recovery instructions in the semantic space, revealing capability-specific instruction sets. Then, the data budget is adaptively allocated across clusters by the degree of corresponding model capability degradation. In each cluster, we prioritize data samples that lead to the most decline of model performance. To mitigate potential negative tuning effects, we also detect and filter out conflicting or irrelevant recovery data. Extensive experiments demonstrate that PASER significantly outperforms conventional baselines, effectively recovering the general capabilities of pruned LLMs while utilizing merely 4\%-20\% of the original post-training data. We provide the anonymous code repository in \href{https://anonymous.4open.science/r/PASER-E606}{Link}.
Related papers
- SPaRFT: Self-Paced Reinforcement Fine-Tuning for Large Language Models [51.74498855100541]
Large language models (LLMs) have shown strong reasoning capabilities when fine-tuned with reinforcement learning (RL)<n>We propose textbfSPaRFT, a self-paced learning framework that enables efficient learning based on the capability of the model being trained.
arXiv Detail & Related papers (2025-08-07T03:50:48Z) - Reward Models Can Improve Themselves: Reward-Guided Adversarial Failure Mode Discovery for Robust Reward Modeling [27.11560841914813]
We introduce REFORM, a self-improving reward modeling framework that enhances robustness by using the reward model itself to guide the generation of falsely scored responses.<n>We evaluate REFORM on two widely used preference datasets Anthropic Helpful Harmless (HH) and PKU Beavertails.
arXiv Detail & Related papers (2025-07-08T21:56:33Z) - AdaDeDup: Adaptive Hybrid Data Pruning for Efficient Large-Scale Object Detection Training [33.01500681857408]
We introduce Adaptive De-Duplication (AdaDeDup), a novel framework that integrates density-based pruning with model-informed feedback in a cluster-adaptive manner.<n>It significantly outperforms prominent baselines, substantially reduces performance degradation, and achieves near-original model performance while pruning 20% of data.
arXiv Detail & Related papers (2025-06-24T22:35:51Z) - EpiCoDe: Boosting Model Performance Beyond Training with Extrapolation and Contrastive Decoding [50.29046178980637]
EpiCoDe is a method that boosts model performance in data-scarcity scenarios without extra training.<n>We show that EpiCoDe consistently outperforms existing methods with significant and robust improvement.
arXiv Detail & Related papers (2025-06-04T02:11:54Z) - More is Less: The Pitfalls of Multi-Model Synthetic Preference Data in DPO Safety Alignment [80.04449725137177]
Direct Preference Optimization (DPO) has emerged as a simple, yet effective alternative to reinforcement learning from human feedback.<n>Our study reveals a striking, safety-specific phenomenon associated with DPO alignment.<n>Using solely self-generated responses for both chosen and rejected pairs significantly outperforms configurations that incorporate responses from stronger models.
arXiv Detail & Related papers (2025-04-03T00:36:40Z) - iTool: Boosting Tool Use of Large Language Models via Iterative Reinforced Fine-Tuning [39.65877861652369]
Augmenting large language models with external tools is a promising approach to enhancing their capabilities.<n>We show that training gains significantly decay as synthetic data increases.<n>We propose an iterative reinforced fine-tuning strategy designed to alleviate these challenges.
arXiv Detail & Related papers (2025-01-15T04:52:34Z) - Machine Unlearning on Pre-trained Models by Residual Feature Alignment Using LoRA [15.542668474378633]
We propose a novel and efficient machine unlearning method on pre-trained models.
We leverage LoRA to decompose the model's intermediate features into pre-trained features and residual features.
The method aims to learn the zero residuals on the retained set and shifted residuals on the unlearning set.
arXiv Detail & Related papers (2024-11-13T08:56:35Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
Learn-Focus-Review (LFR) is a dynamic training approach that adapts to the model's learning progress.<n>LFR tracks the model's learning performance across data blocks (sequences of tokens) and prioritizes revisiting challenging regions of the dataset.<n>Compared to baseline models trained on the full datasets, LFR consistently achieved lower perplexity and higher accuracy.
arXiv Detail & Related papers (2024-09-10T00:59:18Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - INGENIOUS: Using Informative Data Subsets for Efficient Pre-Training of
Language Models [40.54353850357839]
We show how we can employ submodular optimization to select highly representative subsets of the training corpora.
We show that the resulting models achieve up to $sim99%$ of the performance of the fully-trained models.
arXiv Detail & Related papers (2023-05-11T09:24:41Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Exposing Shallow Heuristics of Relation Extraction Models with Challenge
Data [49.378860065474875]
We identify failure modes of SOTA relation extraction (RE) models trained on TACRED.
By adding some of the challenge data as training examples, the performance of the model improves.
arXiv Detail & Related papers (2020-10-07T21:17:25Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.