Deep-Learning-Assisted Highly-Accurate COVID-19 Diagnosis on Lung Computed Tomography Images
- URL: http://arxiv.org/abs/2507.04252v1
- Date: Sun, 06 Jul 2025 05:54:44 GMT
- Title: Deep-Learning-Assisted Highly-Accurate COVID-19 Diagnosis on Lung Computed Tomography Images
- Authors: Yinuo Wang, Juhyun Bae, Ka Ho Chow, Shenyang Chen, Shreyash Gupta,
- Abstract summary: COVID-19 is a severe and acute viral disease that can cause symptoms consistent with pneumonia.<n>The diagnosis of COVID using CT scans has been effective in assisting with RT-PCR diagnosis and severity classifications.<n>In this paper, we proposed a new data quality control pipeline to refine the quality of CT images based on GAN and sliding windows.
- Score: 3.795837769531959
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: COVID-19 is a severe and acute viral disease that can cause symptoms consistent with pneumonia in which inflammation is caused in the alveolous regions of the lungs leading to a build-up of fluid and breathing difficulties. Thus, the diagnosis of COVID using CT scans has been effective in assisting with RT-PCR diagnosis and severity classifications. In this paper, we proposed a new data quality control pipeline to refine the quality of CT images based on GAN and sliding windows. Also, we use class-sensitive cost functions including Label Distribution Aware Loss(LDAM Loss) and Class-balanced(CB) Loss to solve the long-tail problem existing in datasets. Our model reaches more than 0.983 MCC in the benchmark test dataset.
Related papers
- Effective-LDAM: An Effective Loss Function To Mitigate Data Imbalance for Robust Chest X-Ray Disease Classification [0.02609206307458148]
We propose an algorithmic-centric approach called Effective-Label Distribution Aware Margin (E-LDAM)
E-LDAM modifies the margin of the widely adopted Label Distribution Aware Margin (LDAM) loss function using an effective number of samples in each class.
The experimental results demonstrate the effectiveness of the proposed E-LDAM approach, achieving a remarkable recall score of 97.81% for the minority class.
arXiv Detail & Related papers (2024-07-06T04:24:07Z) - CXR-Net: An Encoder-Decoder-Encoder Multitask Deep Neural Network for
Explainable and Accurate Diagnosis of COVID-19 pneumonia with Chest X-ray
Images [2.2098092675263423]
We propose a novel explainable deep learning framework (CXRNet) for accurate COVID-19 pneumonia detection.
The proposed framework is based on a new multitask architecture, allowing for both disease classification and visual explanation.
The experimental results demonstrate that the proposed method can achieve a satisfactory level of accuracy.
arXiv Detail & Related papers (2021-10-20T22:50:35Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Dual-Attention Residual Network for Automatic Diagnosis of COVID-19 [6.941255691176647]
We propose a novel residual network to automatically identify COVID-19 from other common pneumonia and normal people using CT images.
Our method can differentiate COVID-19 from the other two classes with 94.7% accuracy, 93.73% sensitivity, 98.28% specificity, 95.26% F1-score, and an area under the receiver operating characteristic curve (AUC) of 0.99.
arXiv Detail & Related papers (2021-05-14T11:59:47Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - Few-shot Learning for CT Scan based COVID-19 Diagnosis [33.26861533338019]
Coronavirus disease 2019 (COVID-19) is a Public Health Emergency of International Concern infecting more than 40 million people across 188 countries and territories.
Deep learning approaches have become an effective tool for automatic screening of medical images, and it is also being considered for COVID-19 diagnosis.
We propose a supervised domain adaption based COVID-19 CT diagnostic method which can perform effectively when only a small samples of labeled CT scans are available.
arXiv Detail & Related papers (2021-02-01T02:37:49Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Adaptive Feature Selection Guided Deep Forest for COVID-19
Classification with Chest CT [49.09507792800059]
We propose an Adaptive Feature Selection guided Deep Forest (AFS-DF) for COVID-19 classification based on chest CT images.
We evaluate our proposed AFS-DF on COVID-19 dataset with 1495 patients of COVID-19 and 1027 patients of community acquired pneumonia (CAP)
arXiv Detail & Related papers (2020-05-07T06:00:02Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries.
To control the infection, identifying and separating the infected people is the most crucial step.
This paper develops a novel Joint Classification and (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis.
arXiv Detail & Related papers (2020-04-15T12:30:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.