Dual-Attention Residual Network for Automatic Diagnosis of COVID-19
- URL: http://arxiv.org/abs/2105.06779v1
- Date: Fri, 14 May 2021 11:59:47 GMT
- Title: Dual-Attention Residual Network for Automatic Diagnosis of COVID-19
- Authors: Jun Shi, Huite Yi, Xiaoyu Hao, Hong An, Wei Wei
- Abstract summary: We propose a novel residual network to automatically identify COVID-19 from other common pneumonia and normal people using CT images.
Our method can differentiate COVID-19 from the other two classes with 94.7% accuracy, 93.73% sensitivity, 98.28% specificity, 95.26% F1-score, and an area under the receiver operating characteristic curve (AUC) of 0.99.
- Score: 6.941255691176647
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ongoing global pandemic of Coronavirus Disease 2019 (COVID-19) has posed
serious threat to public health and the economy. Rapid and accurate diagnosis
of COVID-19 is crucial to prevent the further spread of the disease and reduce
its mortality. Chest computed tomography (CT) is an effective tool for the
early diagnosis of lung diseases including pneumonia. However, detecting
COVID-19 from CT is demanding and prone to human errors as some early-stage
patients may have negative findings on images. In this study, we propose a
novel residual network to automatically identify COVID-19 from other common
pneumonia and normal people using CT images. Specifically, we employ the
modified 3D ResNet18 as the backbone network, which is equipped with both
channel-wise attention (CA) and depth-wise attention (DA) modules to further
improve the diagnostic performance. Experimental results on the large
open-source dataset show that our method can differentiate COVID-19 from the
other two classes with 94.7% accuracy, 93.73% sensitivity, 98.28% specificity,
95.26% F1-score, and an area under the receiver operating characteristic curve
(AUC) of 0.99, outperforming baseline methods. These results demonstrate that
the proposed method could potentially assist the clinicians in performing a
quick diagnosis to fight COVID-19.
Related papers
- Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
Lung diseases such as COVID-19, tuberculosis (TB), and pneumonia continue to be serious global health concerns.
Paramedics and scientists are working intensively to create a reliable and precise approach for early-stage COVID-19 diagnosis.
arXiv Detail & Related papers (2023-10-09T18:38:49Z) - Auto-Lesion Segmentation with a Novel Intensity Dark Channel Prior for
COVID-19 Detection [0.24578723416255752]
This study develops a CT-based radiomics framework for differentiation of COVID-19 from other lung diseases.
The model categorizes images into three classes: COVID-19, non-COVID-19, or normal.
The best performing classification model, Residual Neural Network with 50 layers (Resnet-50), attained an average accuracy, precision, recall, and F1-score of 98.8%, 99%, 98%, and 98% respectively.
arXiv Detail & Related papers (2023-09-22T06:09:48Z) - A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - CCBlock: An Effective Use of Deep Learning for Automatic Diagnosis of
COVID-19 Using X-Ray Images [0.0]
The COVID-19 pandemic has dramatically affected the health and well-being of the world's population.
It is necessary to develop assistive methods for detecting and diagnosing the COVID-19 to eradicate the spread of the novel coronavirus among people.
Based on convolutional neural networks (CNNs), automated detection systems have shown promising results of diagnosing patients with the COVID-19 through radiography.
arXiv Detail & Related papers (2020-09-21T19:20:01Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
We develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT)
In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses.
Our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%.
arXiv Detail & Related papers (2020-05-06T09:56:51Z) - COVID-DA: Deep Domain Adaptation from Typical Pneumonia to COVID-19 [92.4955073477381]
The outbreak of novel coronavirus disease 2019 (COVID-19) has already infected millions of people and is still rapidly spreading all over the globe.
Deep learning has been used recently as effective computer-aided means to improve diagnostic efficiency.
We propose a new deep domain adaptation method for COVID-19 diagnosis, namely COVID-DA.
arXiv Detail & Related papers (2020-04-30T03:13:40Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries.
To control the infection, identifying and separating the infected people is the most crucial step.
This paper develops a novel Joint Classification and (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis.
arXiv Detail & Related papers (2020-04-15T12:30:40Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.