Computed Tomography Visual Question Answering with Cross-modal Feature Graphing
- URL: http://arxiv.org/abs/2507.04333v1
- Date: Sun, 06 Jul 2025 10:37:16 GMT
- Title: Computed Tomography Visual Question Answering with Cross-modal Feature Graphing
- Authors: Yuanhe Tian, Chen Su, Junwen Duan, Yan Song,
- Abstract summary: Visual question answering (VQA) in medical imaging aims to support clinical diagnosis by automatically interpreting complex imaging data in response to natural language queries.<n>Existing studies typically rely on distinct visual and textual encoders to independently extract features from medical images and clinical questions, which are subsequently combined to generate answers.<n>We propose a novel large language model (LLM)-based framework enhanced by a graph representation of salient features.
- Score: 16.269682136158004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual question answering (VQA) in medical imaging aims to support clinical diagnosis by automatically interpreting complex imaging data in response to natural language queries. Existing studies typically rely on distinct visual and textual encoders to independently extract features from medical images and clinical questions, which are subsequently combined to generate answers. Specifically, in computed tomography (CT), such approaches are similar to the conventional practices in medical image analysis. However, these approaches pay less attention to the spatial continuity and inter-slice correlations in the volumetric CT data, leading to fragmented and imprecise responses. In this paper, we propose a novel large language model (LLM)-based framework enhanced by a graph representation of salient features. Different from conventional multimodal encoding strategies, our approach constructs a cross-modal graph integrating both visual and textual features, treating individual CT slices and question tokens as nodes within the graph. We further leverage an attentive graph convolutional network to dynamically fuse information within this structure. The resulting aggregated graph features then serve as a soft prompt to guide a large language model in generating accurate answers. Extensive experiments on the M3D-VQA benchmark demonstrate that our approach consistently outperforms baselines across multiple evaluation metrics, offering more robust reasoning capabilities.
Related papers
- On the Risk of Misleading Reports: Diagnosing Textual Biases in Multimodal Clinical AI [4.866086225040713]
We introduce a perturbation-based approach to quantify a model's reliance on each modality in binary classification tasks.<n>By swapping images or text between samples with opposing labels, we expose modality-specific biases.
arXiv Detail & Related papers (2025-07-31T21:35:52Z) - Fine-tuning Vision Language Models with Graph-based Knowledge for Explainable Medical Image Analysis [44.38638601819933]
Current staging models for Diabetic Retinopathy (DR) are hardly interpretable.<n>We present a novel method that integrates graph representation learning with vision-language models (VLMs) to deliver explainable DR diagnosis.
arXiv Detail & Related papers (2025-03-12T20:19:07Z) - RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining [64.66825253356869]
We propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities.<n>We construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans.<n>We develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks.
arXiv Detail & Related papers (2025-03-06T17:43:03Z) - EXGRA-MED: Extended Context Graph Alignment for Medical Vision- Language Models [69.40730368630003]
We introduce EXGRA-MED, a novel framework for vision-language integration in medical AI.<n>It jointly aligns images, instruction responses, and extended captions in the latent space, advancing semantic grounding and cross-modal coherence.<n>It matches LLAVA-MED's performance using just 10% of pre-training data, achieving a 20.13% gain on VQA-RAD and approaching full-data performance.
arXiv Detail & Related papers (2024-10-03T15:52:03Z) - ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
We announce MVKL, the first multimodal mammography dataset encompassing multi-view images, detailed manifestations and reports.
Based on this dataset, we focus on the challanging task of unsupervised pretraining.
We propose ViKL, a framework that synergizes Visual, Knowledge, and Linguistic features.
arXiv Detail & Related papers (2024-09-24T05:01:23Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
We introduce a pioneering method for learning 3D medical image representations through an autoregressive sequence pre-training framework.<n>Our approach various 3D medical images based on spatial, contrast, and semantic correlations, treating them as interconnected visual tokens within a token sequence.
arXiv Detail & Related papers (2024-09-13T10:19:10Z) - GEM: Context-Aware Gaze EstiMation with Visual Search Behavior Matching for Chest Radiograph [32.1234295417225]
We propose a context-aware Gaze EstiMation (GEM) network that utilizes eye gaze data collected from radiologists to simulate their visual search behavior patterns.
It consists of a context-awareness module, visual behavior graph construction, and visual behavior matching.
Experiments on four publicly available datasets demonstrate the superiority of GEM over existing methods.
arXiv Detail & Related papers (2024-08-10T09:46:25Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - MuVAM: A Multi-View Attention-based Model for Medical Visual Question
Answering [2.413694065650786]
This paper proposes a multi-view attention-based model(MuVAM) for medical visual question answering.
It integrates the high-level semantics of medical images on the basis of text description.
Experiments on two datasets show that the effectiveness of MuVAM surpasses the state-of-the-art method.
arXiv Detail & Related papers (2021-07-07T13:40:25Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.