Static Analysis for Detecting Transaction Conflicts in Ethereum Smart Contracts
- URL: http://arxiv.org/abs/2507.04357v2
- Date: Tue, 22 Jul 2025 11:40:15 GMT
- Title: Static Analysis for Detecting Transaction Conflicts in Ethereum Smart Contracts
- Authors: Atefeh Zareh Chahoki, Marco Roveri,
- Abstract summary: We propose a novel static analysis method to detect potential transaction conflicts in smart contracts.<n>Our method identifies read-write, write-write, and function call conflicts by analyzing state variable access patterns in Solidity contracts.
- Score: 2.6703221234079946
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Ethereum smart contracts operate in a concurrent environment where multiple transactions can be submitted simultaneously. However, the Ethereum Virtual Machine (EVM) enforces sequential execution of transactions within each block to prevent conflicts arising from concurrent access to the same state variables. Although this approach guarantees correct behavior, it limits the ability of validators to leverage multi-core architectures for faster transaction processing, thus restricting throughput. Existing solutions introduce concurrency by allowing simultaneous transaction execution combined with runtime conflict detection and rollback mechanisms to maintain correctness. However, these methods incur significant overhead due to continuous conflict tracking and transaction reversion. Recently, alternative approaches have emerged that aim to predict conflicts statically, before execution, by analyzing smart contract code for potential transaction interactions. Despite their promise, there is a lack of comprehensive studies that examine static conflict detection and its broader implications in specific smart contracts. This paper fills this important gap by proposing a novel static analysis method to detect potential transaction conflicts in Ethereum smart contracts. Our method identifies read-write, write-write, and function call conflicts between transaction pairs by analyzing state variable access patterns in Solidity contracts. We implement a tool that parses contract code and performs conflict detection. Evaluation on a dataset of real-world Ethereum smart contracts demonstrates that our approach achieves high precision in identifying potential conflicts. By enabling proactive conflict detection, our tool supports further design of transaction scheduling strategies that reduce runtime failures, enhance validator throughput, and contribute to blockchain scalability.
Related papers
- Conthereum: Concurrent Ethereum Optimized Transaction Scheduling for Multi-Core Execution [3.462869032423588]
Conthereum is a concurrent solution for intra-block parallel transaction execution.<n>At the heart of Conthereum is a novel, lightweight, high-performance scheduler.<n>We show near-linear throughput gains with increasing computational power on standard 8-core machines.
arXiv Detail & Related papers (2025-04-09T21:15:05Z) - Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs [60.881609323604685]
Large Language Models (LLMs) accessed via black-box APIs introduce a trust challenge.<n>Users pay for services based on advertised model capabilities.<n> providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs.<n>This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking.
arXiv Detail & Related papers (2025-04-07T03:57:41Z) - SolBench: A Dataset and Benchmark for Evaluating Functional Correctness in Solidity Code Completion and Repair [51.0686873716938]
We introduce SolBench, a benchmark for evaluating the functional correctness of Solidity smart contracts generated by code completion models.<n>We propose a Retrieval-Augmented Code Repair framework to verify functional correctness of smart contracts.<n>Results show that code repair and retrieval techniques effectively enhance the correctness of smart contract completion while reducing computational costs.
arXiv Detail & Related papers (2025-03-03T01:55:20Z) - ContractTrace: Retracing Smart Contract Versions for Security Analyses [4.126275271359132]
We introduce ContractTrace, an automated infrastructure that accurately identifies and links versions of smart contracts into coherent lineages.<n>This capability is essential for understanding vulnerability propagation patterns and evaluating the effectiveness of security patches in blockchain environments.
arXiv Detail & Related papers (2024-12-30T11:10:22Z) - Proxion: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum [6.544211171664063]
We present Proxion, an automated cross-contract analyzer that identifies all proxy smart contracts and their collisions.
What sets Proxion apart is its ability to analyze hidden smart contracts that lack both source code and past transactions.
We apply Proxion to analyze over 36 million alive contracts from 2015 to 2023, revealing that 54.2% of them are proxy contracts.
arXiv Detail & Related papers (2024-09-20T15:03:19Z) - LookAhead: Preventing DeFi Attacks via Unveiling Adversarial Contracts [15.071155232677643]
Decentralized Finance (DeFi) has resulted in financial losses exceeding 3 billion US dollars.<n>Current detection tools face significant challenges in identifying attack activities effectively.<n>We propose LookAhead, a new framework for detecting DeFi attacks via unveiling adversarial contracts.
arXiv Detail & Related papers (2024-01-14T11:39:33Z) - Blockchain Smart Contract Threat Detection Technology Based on Symbolic
Execution [0.0]
Reentrancy vulnerability, which is hidden and complex, poses a great threat to smart contracts.
In this paper, we propose a smart contract threat detection technology based on symbolic execution.
The experimental results show that this method significantly increases both detection efficiency and accuracy.
arXiv Detail & Related papers (2023-12-24T03:27:03Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Pre-deployment Analysis of Smart Contracts -- A Survey [0.27195102129095]
We present a systematic review of the literature on smart contract vulnerabilities and methods.
Specifically, we enumerate and classify smart contract vulnerabilities and methods by the properties they address.
Several patterns about the strengths of different methods emerge through this classification process.
arXiv Detail & Related papers (2023-01-15T12:36:56Z) - Detecting Logical Relation In Contract Clauses [94.85352502638081]
We develop an approach to automate the extraction of logical relations between clauses in a contract.
The resulting approach should help contract authors detecting potential logical conflicts between clauses.
arXiv Detail & Related papers (2021-11-02T19:26:32Z) - ADC: Adversarial attacks against object Detection that evade Context
consistency checks [55.8459119462263]
We show that even context consistency checks can be brittle to properly crafted adversarial examples.
We propose an adaptive framework to generate examples that subvert such defenses.
Our results suggest that how to robustly model context and check its consistency, is still an open problem.
arXiv Detail & Related papers (2021-10-24T00:25:09Z) - LSTC: Boosting Atomic Action Detection with Long-Short-Term Context [60.60267767456306]
We decompose the action recognition pipeline into short-term and long-term reliance.
Within our design, a local aggregation branch is utilized to gather dense and informative short-term cues.
Both branches independently predict the context-specific actions and the results are merged in the end.
arXiv Detail & Related papers (2021-10-19T10:09:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.