Proxion: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum
- URL: http://arxiv.org/abs/2409.13563v1
- Date: Fri, 20 Sep 2024 15:03:19 GMT
- Title: Proxion: Uncovering Hidden Proxy Smart Contracts for Finding Collision Vulnerabilities in Ethereum
- Authors: Cheng-Kang Chen, Wen-Yi Chu, Muoi Tran, Laurent Vanbever, Hsu-Chun Hsiao,
- Abstract summary: We present Proxion, an automated cross-contract analyzer that identifies all proxy smart contracts and their collisions.
What sets Proxion apart is its ability to analyze hidden smart contracts that lack both source code and past transactions.
We apply Proxion to analyze over 36 million alive contracts from 2015 to 2023, revealing that 54.2% of them are proxy contracts.
- Score: 6.544211171664063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proxy design pattern allows Ethereum smart contracts to be simultaneously immutable and upgradeable, in which an original contract is split into a proxy contract containing the data storage and a logic contract containing the implementation logic. This architecture is known to have security issues, namely function collisions and storage collisions between the proxy and logic contracts, and has been exploited in real-world incidents to steal users' millions of dollars worth of digital assets. In response to this concern, several previous works have sought to identify proxy contracts in Ethereum and detect their collisions. However, they all fell short due to their limited coverage, often restricting analysis to only contracts with available source code or past transactions. To bridge this gap, we present Proxion, an automated cross-contract analyzer that identifies all proxy smart contracts and their collisions in Ethereum. What sets Proxion apart is its ability to analyze hidden smart contracts that lack both source code and past transactions. Equipped with various techniques to enhance efficiency and accuracy, Proxion outperforms the state-of-the-art tools, notably identifying millions more proxy contracts and thousands of unreported collisions. We apply Proxion to analyze over 36 million alive contracts from 2015 to 2023, revealing that 54.2% of them are proxy contracts, and about 1.5 million contracts exhibit at least one collision issue.
Related papers
- Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
This paper proposes Ethstractor, the first smart contract collection tool for gathering a dataset of versioned smart contracts.
The collected dataset is then used to evaluate the reliability of code metrics as indicators of vulnerabilities in smart contracts.
arXiv Detail & Related papers (2024-07-22T18:27:29Z) - Dual-view Aware Smart Contract Vulnerability Detection for Ethereum [5.002702845720439]
We propose a Dual-view Aware Smart Contract Vulnerability Detection Framework named DVDet.
The framework initially converts the source code and bytecode of smart contracts into weighted graphs and control flow sequences.
Comprehensive experiments on the dataset show that our method outperforms others in detecting vulnerabilities.
arXiv Detail & Related papers (2024-06-29T06:47:51Z) - StateGuard: Detecting State Derailment Defects in Decentralized Exchange Smart Contract [4.891180928768215]
We conduct the first systematic study on state derailment defects of DEXs.
These defects could lead to incorrect, incomplete, or unauthorized changes to the system state during contract execution.
We propose StateGuard, a deep learning-based framework to detect state derailment defects in DEX smart contracts.
arXiv Detail & Related papers (2024-05-15T08:40:29Z) - Uncover the Premeditated Attacks: Detecting Exploitable Reentrancy Vulnerabilities by Identifying Attacker Contracts [27.242299425486273]
Reentrancy, a notorious vulnerability in smart contracts, has led to millions of dollars in financial loss.
Current smart contract vulnerability detection tools suffer from a high false positive rate in identifying contracts with reentrancy vulnerabilities.
We propose BlockWatchdog, a tool that focuses on detecting reentrancy vulnerabilities by identifying attacker contracts.
arXiv Detail & Related papers (2024-03-28T03:07:23Z) - Contract Usage and Evolution in Android Mobile Applications [45.44831696628473]
We present the first large-scale empirical study on the presence and use of contracts in Android applications, written in Java or Kotlin.
We analyzed 2,390 Android applications from the F-Droid repository and processed more than 51,749 KLOC.
Our findings show that it would be desirable to have libraries that standardize contract specifications in Java and Kotlin.
arXiv Detail & Related papers (2024-01-25T15:36:49Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
arXiv Detail & Related papers (2023-12-27T11:26:26Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Detecting Logical Relation In Contract Clauses [94.85352502638081]
We develop an approach to automate the extraction of logical relations between clauses in a contract.
The resulting approach should help contract authors detecting potential logical conflicts between clauses.
arXiv Detail & Related papers (2021-11-02T19:26:32Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.