RegistrationMamba: A Mamba-based Registration Framework Integrating Multi-Expert Feature Learning for Cross-Modal Remote Sensing Images
- URL: http://arxiv.org/abs/2507.04397v1
- Date: Sun, 06 Jul 2025 13:59:51 GMT
- Title: RegistrationMamba: A Mamba-based Registration Framework Integrating Multi-Expert Feature Learning for Cross-Modal Remote Sensing Images
- Authors: Wei Wang, Dou Quan, Chonghua Lv, Shuang Wang, Ning Huyan, Yunan Li, Licheng Jiao,
- Abstract summary: Cross-modal remote sensing image (CRSI) registration is critical for multi-modal image applications.<n>Existing methods mainly adopt convolutional neural networks (CNNs) or Transformer architectures to extract discriminative features for registration.<n>This paper proposes RegistrationMamba, a novel Mamba architecture based on state space models (SSMs) integrating multi-expert feature learning.
- Score: 39.5745769925092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-modal remote sensing image (CRSI) registration is critical for multi-modal image applications. However, CRSI mainly faces two challenges: significant nonlinear radiometric variations between cross-modal images and limited textures hindering the discriminative information extraction. Existing methods mainly adopt convolutional neural networks (CNNs) or Transformer architectures to extract discriminative features for registration. However, CNNs with the local receptive field fail to capture global contextual features, and Transformers have high computational complexity and restrict their application to high-resolution CRSI. To solve these issues, this paper proposes RegistrationMamba, a novel Mamba architecture based on state space models (SSMs) integrating multi-expert feature learning for improving the accuracy of CRSI registration. Specifically, RegistrationMamba employs a multi-directional cross-scanning strategy to capture global contextual relationships with linear complexity. To enhance the performance of RegistrationMamba under texture-limited scenarios, we propose a multi-expert feature learning (MEFL) strategy to capture features from various augmented image variants through multiple feature experts. MEFL leverages a learnable soft router to dynamically fuse the features from multiple experts, thereby enriching feature representations and improving registration performance. Notably, MEFL can be seamlessly integrated into various frameworks, substantially boosting registration performance. Additionally, RegistrationMamba integrates a multi-level feature aggregation (MFA) module to extract fine-grained local information and enable effective interaction between global and local features. Extensive experiments on CRSI with varying image resolutions have demonstrated that RegistrationMamba has superior performance and robustness compared to state-of-the-art methods.
Related papers
- An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
Current mainstream approaches are based on three architectural paradigms: CNNs, Transformers, and Mambas.<n>We propose RestorMixer, an efficient and general-purpose IR model based on mixed-architecture fusion.
arXiv Detail & Related papers (2025-04-15T08:19:12Z) - CoLLM: A Large Language Model for Composed Image Retrieval [76.29725148964368]
Composed Image Retrieval (CIR) is a complex task that aims to retrieve images based on a multimodal query.<n>We present CoLLM, a one-stop framework that generates triplets on-the-fly from image-caption pairs.<n>We leverage Large Language Models (LLMs) to generate joint embeddings of reference images and modification texts.
arXiv Detail & Related papers (2025-03-25T17:59:50Z) - Multimodal-Aware Fusion Network for Referring Remote Sensing Image Segmentation [7.992331117310217]
Referring remote sensing image segmentation (RRSIS) is a novel visual task in remote sensing images segmentation.<n>We design a multimodal-aware fusion network (MAFN) to achieve fine-grained alignment and fusion between the two modalities.
arXiv Detail & Related papers (2025-03-14T08:31:21Z) - MambaReg: Mamba-Based Disentangled Convolutional Sparse Coding for Unsupervised Deformable Multi-Modal Image Registration [13.146228081053714]
Traditional learning-based approaches often consider registration networks as black boxes without interpretability.
We propose MambaReg, a novel Mamba-based architecture that integrates Mamba's strong capability in capturing long sequences.
Our network adeptly captures the correlation between multi-modal images, enabling focused deformation field prediction.
arXiv Detail & Related papers (2024-11-03T01:30:59Z) - Unifying Visual and Semantic Feature Spaces with Diffusion Models for Enhanced Cross-Modal Alignment [20.902935570581207]
We introduce a Multimodal Alignment and Reconstruction Network (MARNet) to enhance the model's resistance to visual noise.
MARNet includes a cross-modal diffusion reconstruction module for smoothly and stably blending information across different domains.
Experiments conducted on two benchmark datasets, Vireo-Food172 and Ingredient-101, demonstrate that MARNet effectively improves the quality of image information extracted by the model.
arXiv Detail & Related papers (2024-07-26T16:30:18Z) - Cross-Domain Separable Translation Network for Multimodal Image Change Detection [11.25422609271201]
multimodal change detection (MCD) is particularly critical in the remote sensing community.
This paper focuses on addressing the challenges of MCD, especially the difficulty in comparing images from different sensors.
A novel unsupervised cross-domain separable translation network (CSTN) is proposed to overcome these limitations.
arXiv Detail & Related papers (2024-07-23T03:56:02Z) - Harnessing Massive Satellite Imagery with Efficient Masked Image Modeling [20.479011464156113]
Masked Image Modeling (MIM) has become an essential method for building foundational visual models in remote sensing (RS)<n>We present a new pre-training pipeline for RS models featuring the creation of a large-scale RS dataset and an efficient MIM approach.<n>We propose SelectiveMAE, a pre-training method that dynamically encodes and reconstructs semantically rich patch tokens.
arXiv Detail & Related papers (2024-06-17T15:41:57Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.