Sat2City: 3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
- URL: http://arxiv.org/abs/2507.04403v1
- Date: Sun, 06 Jul 2025 14:30:08 GMT
- Title: Sat2City: 3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
- Authors: Tongyan Hua, Lutao Jiang, Ying-Cong Chen, Wufan Zhao,
- Abstract summary: Sat2City is a novel framework that synergizes the representational capacity of sparse voxel grids with latent diffusion models.<n>We introduce a dataset of synthesized large-scale 3D cities paired with satellite-view height maps.<n>Our framework generates detailed 3D structures from a single satellite image, achieving superior fidelity compared to existing city generation models.
- Score: 18.943643720564996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in generative models have enabled 3D urban scene generation from satellite imagery, unlocking promising applications in gaming, digital twins, and beyond. However, most existing methods rely heavily on neural rendering techniques, which hinder their ability to produce detailed 3D structures on a broader scale, largely due to the inherent structural ambiguity derived from relatively limited 2D observations. To address this challenge, we propose Sat2City, a novel framework that synergizes the representational capacity of sparse voxel grids with latent diffusion models, tailored specifically for our novel 3D city dataset. Our approach is enabled by three key components: (1) A cascaded latent diffusion framework that progressively recovers 3D city structures from satellite imagery, (2) a Re-Hash operation at its Variational Autoencoder (VAE) bottleneck to compute multi-scale feature grids for stable appearance optimization and (3) an inverse sampling strategy enabling implicit supervision for smooth appearance transitioning.To overcome the challenge of collecting real-world city-scale 3D models with high-quality geometry and appearance, we introduce a dataset of synthesized large-scale 3D cities paired with satellite-view height maps. Validated on this dataset, our framework generates detailed 3D structures from a single satellite image, achieving superior fidelity compared to existing city generation models.
Related papers
- Diffusion-Guided Gaussian Splatting for Large-Scale Unconstrained 3D Reconstruction and Novel View Synthesis [22.767866875051013]
We propose GS-Diff, a novel 3DGS framework guided by a multi-view diffusion model to address limitations of current methods.<n>By generating pseudo-observations conditioned on multi-view inputs, our method transforms under-constrained 3D reconstruction problems into well-posed ones.<n> Experiments on four benchmarks demonstrate that GS-Diff consistently outperforms state-of-the-art baselines by significant margins.
arXiv Detail & Related papers (2025-04-02T17:59:46Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
Existing NeRF and 3DGS-based methods show promising results in achieving photorealistic renderings but require slow, per-scene optimization.<n>We introduce EVolSplat, an efficient 3D Gaussian Splatting model for urban scenes that works in a feed-forward manner.
arXiv Detail & Related papers (2025-03-26T02:47:27Z) - DirectTriGS: Triplane-based Gaussian Splatting Field Representation for 3D Generation [37.09199962653554]
We present DirectTriGS, a novel framework designed for 3D object generation with Gaussian Splatting (GS)<n>The proposed generation framework can produce high-quality 3D object geometry and rendering results in the text-to-3D task.
arXiv Detail & Related papers (2025-03-10T04:05:38Z) - GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency [50.11520458252128]
Existing 3D affordance learning methods struggle with generalization and robustness due to limited annotated data.<n>We propose GEAL, a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging large-scale pre-trained 2D models.<n>GEAL consistently outperforms existing methods across seen and novel object categories, as well as corrupted data.
arXiv Detail & Related papers (2024-12-12T17:59:03Z) - T-3DGS: Removing Transient Objects for 3D Scene Reconstruction [83.05271859398779]
Transient objects in video sequences can significantly degrade the quality of 3D scene reconstructions.<n>We propose T-3DGS, a novel framework that robustly filters out transient distractors during 3D reconstruction using Gaussian Splatting.
arXiv Detail & Related papers (2024-11-29T07:45:24Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.<n>Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - Pushing Auto-regressive Models for 3D Shape Generation at Capacity and Scalability [118.26563926533517]
Auto-regressive models have achieved impressive results in 2D image generation by modeling joint distributions in grid space.
We extend auto-regressive models to 3D domains, and seek a stronger ability of 3D shape generation by improving auto-regressive models at capacity and scalability simultaneously.
arXiv Detail & Related papers (2024-02-19T15:33:09Z) - Sat2Scene: 3D Urban Scene Generation from Satellite Images with Diffusion [77.34078223594686]
We propose a novel architecture for direct 3D scene generation by introducing diffusion models into 3D sparse representations and combining them with neural rendering techniques.
Specifically, our approach generates texture colors at the point level for a given geometry using a 3D diffusion model first, which is then transformed into a scene representation in a feed-forward manner.
Experiments in two city-scale datasets show that our model demonstrates proficiency in generating photo-realistic street-view image sequences and cross-view urban scenes from satellite imagery.
arXiv Detail & Related papers (2024-01-19T16:15:37Z) - City-scale Incremental Neural Mapping with Three-layer Sampling and
Panoptic Representation [5.682979644056021]
We build a city-scale continual neural mapping system with a panoptic representation that consists of environment-level and instance-level modelling.
Given a stream of sparse LiDAR point cloud, it maintains a dynamic generative model that maps 3D coordinates to signed distance field (SDF) values.
To realize high fidelity mapping of instance under incomplete observation, category-specific prior is introduced to better model the geometric details.
arXiv Detail & Related papers (2022-09-28T13:14:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.