City-scale Incremental Neural Mapping with Three-layer Sampling and
Panoptic Representation
- URL: http://arxiv.org/abs/2209.14072v2
- Date: Wed, 12 Apr 2023 12:06:09 GMT
- Title: City-scale Incremental Neural Mapping with Three-layer Sampling and
Panoptic Representation
- Authors: Yongliang Shi, Runyi Yang, Pengfei Li, Zirui Wu, Hao Zhao, Guyue Zhou
- Abstract summary: We build a city-scale continual neural mapping system with a panoptic representation that consists of environment-level and instance-level modelling.
Given a stream of sparse LiDAR point cloud, it maintains a dynamic generative model that maps 3D coordinates to signed distance field (SDF) values.
To realize high fidelity mapping of instance under incomplete observation, category-specific prior is introduced to better model the geometric details.
- Score: 5.682979644056021
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural implicit representations are drawing a lot of attention from the
robotics community recently, as they are expressive, continuous and compact.
However, city-scale continual implicit dense mapping based on sparse LiDAR
input is still an under-explored challenge. To this end, we successfully build
a city-scale continual neural mapping system with a panoptic representation
that consists of environment-level and instance-level modelling. Given a stream
of sparse LiDAR point cloud, it maintains a dynamic generative model that maps
3D coordinates to signed distance field (SDF) values. To address the difficulty
of representing geometric information at different levels in city-scale space,
we propose a tailored three-layer sampling strategy to dynamically sample the
global, local and near-surface domains. Meanwhile, to realize high fidelity
mapping of instance under incomplete observation, category-specific prior is
introduced to better model the geometric details. We evaluate on the public
SemanticKITTI dataset and demonstrate the significance of the newly proposed
three-layer sampling strategy and panoptic representation, using both
quantitative and qualitative results. Codes and model will be publicly
available.
Related papers
- Geometry Distributions [51.4061133324376]
We propose a novel geometric data representation that models geometry as distributions.
Our approach uses diffusion models with a novel network architecture to learn surface point distributions.
We evaluate our representation qualitatively and quantitatively across various object types, demonstrating its effectiveness in achieving high geometric fidelity.
arXiv Detail & Related papers (2024-11-25T04:06:48Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Outdoor Scene Extrapolation with Hierarchical Generative Cellular Automata [70.9375320609781]
We aim to generate fine-grained 3D geometry from large-scale sparse LiDAR scans, abundantly captured by autonomous vehicles (AV)
We propose hierarchical Generative Cellular Automata (hGCA), a spatially scalable 3D generative model, which grows geometry with local kernels following, in a coarse-to-fine manner, equipped with a light-weight planner to induce global consistency.
arXiv Detail & Related papers (2024-06-12T14:56:56Z) - Geometrically-driven Aggregation for Zero-shot 3D Point Cloud Understanding [11.416392706435415]
Zero-shot 3D point cloud understanding can be achieved via 2D Vision-Language Models (VLMs)
Existing strategies directly map Vision-Language Models from 2D pixels of rendered or captured views to 3D points, overlooking the inherent and expressible point cloud geometric structure.
We introduce the first training-free aggregation technique that leverages the point cloud's 3D geometric structure to improve the quality of the transferred Vision-Language Models.
arXiv Detail & Related papers (2023-12-04T12:30:07Z) - LISNeRF Mapping: LiDAR-based Implicit Mapping via Semantic Neural Fields for Large-Scale 3D Scenes [2.822816116516042]
Large-scale semantic mapping is crucial for outdoor autonomous agents to fulfill high-level tasks such as planning and navigation.
This paper proposes a novel method for large-scale 3D semantic reconstruction through implicit representations from posed LiDAR measurements alone.
arXiv Detail & Related papers (2023-11-04T03:55:38Z) - Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
Analysis [66.49788145564004]
We present an unsupervised deep neural architecture called Flattening-Net to represent irregular 3D point clouds of arbitrary geometry and topology.
Our methods perform favorably against the current state-of-the-art competitors.
arXiv Detail & Related papers (2022-12-17T15:05:25Z) - Deep Implicit Surface Point Prediction Networks [49.286550880464866]
Deep neural representations of 3D shapes as implicit functions have been shown to produce high fidelity models.
This paper presents a novel approach that models such surfaces using a new class of implicit representations called the closest surface-point (CSP) representation.
arXiv Detail & Related papers (2021-06-10T14:31:54Z) - Self-supervised Depth Estimation Leveraging Global Perception and
Geometric Smoothness Using On-board Videos [0.5276232626689566]
We present DLNet for pixel-wise depth estimation, which simultaneously extracts global and local features.
A three-dimensional geometry smoothness loss is proposed to predict a geometrically natural depth map.
In experiments on the KITTI and Make3D benchmarks, the proposed DLNet achieves performance competitive to those of the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-07T10:53:27Z) - S3Net: 3D LiDAR Sparse Semantic Segmentation Network [1.330528227599978]
S3Net is a novel convolutional neural network for LiDAR point cloud semantic segmentation.
It adopts an encoder-decoder backbone that consists of Sparse Intra-channel Attention Module (SIntraAM) and Sparse Inter-channel Attention Module (SInterAM)
arXiv Detail & Related papers (2021-03-15T22:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.