RAT: Bridging RNN Efficiency and Attention Accuracy in Language Modeling
- URL: http://arxiv.org/abs/2507.04416v1
- Date: Sun, 06 Jul 2025 15:08:49 GMT
- Title: RAT: Bridging RNN Efficiency and Attention Accuracy in Language Modeling
- Authors: Xiuying Wei, Anunay Yadav, Razvan Pascanu, Caglar Gulcehre,
- Abstract summary: We introduce an intermediate design called rat between recurrence and attention mechanisms.<n>It partitions the input into chunks, applies a simple linear recurrence within each chunk to capture local dependencies, and then performs softmax attention across chunks to model long-range interactions.<n>With a chunk size of 16, the rat layer achieves a (7times) improvement in training speed with 100K token sequences and (9times) in generation at 4K sequence length.
- Score: 17.437929000395112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have become the cornerstone of modern large-scale language models; however, their dependence on softmax attention poses a major computational bottleneck, particularly in long-context settings. In this work, rather than following prevalent approaches such as linear attention (or SSMs) and local attention, we introduce an intermediate design called \rat between recurrence and attention mechanisms. It partitions the input into chunks, applies a simple linear recurrence within each chunk to capture local dependencies, and then performs softmax attention across chunks to model long-range interactions. By adjusting the size of the chunk, \rat enables flexible trade-offs, combining the strengths of RNN and attention. Empirically, with a chunk size of 16, the \rat layer achieves a \(7\times\) improvement in training speed with 100K token sequences and \(9\times\) in generation at 4K sequence length, while maintaining similar or sometimes even better accuracy compared to standard attention. We demonstrate this by training 1.3B parameter models from scratch and performing large-scale evaluations, including short- and long-context benchmarks, as well as supervised fine-tuning~(SFT). We further propose a hybrid architecture that interleaves \rat with local attention. By combining efficient long-range modeling with strong local interactions, this hybrid design not only improves inference speed and reduces cache memory usage compared to attention, but also consistently enhances performance, for example, achieving an average 1 point gain in commonsense reasoning tasks, up to 4 points on code tasks, and a 1 point Rouge-L increase in a summarization SFT task. Code is available at https://github.com/CLAIRE-Labo/RAT
Related papers
- AnchorAttention: Difference-Aware Sparse Attention with Stripe Granularity [9.63873831179673]
Large Language Models (LLMs) with extended context lengths face significant computational challenges during the pre-filling phase.<n>We propose textbfAnchorAttention, a difference-aware, dynamic sparse attention mechanism that efficiently identifies critical attention regions.<n>With its finer-grained sparsity strategy, textbfAnchorAttention achieves higher sparsity rates at the same recall level, significantly reducing computation time.
arXiv Detail & Related papers (2025-05-29T14:59:06Z) - Gated Attention for Large Language Models: Non-linearity, Sparsity, and Attention-Sink-Free [81.65559031466452]
We conduct experiments to investigate gating-augmented softmax attention variants.<n>We find that a simple modification-applying a head-specific sigmoid gate after the Scaled Dot-Product Attention (SDPA)-consistently improves performance.
arXiv Detail & Related papers (2025-05-10T17:15:49Z) - SparseAccelerate: Efficient Long-Context Inference for Mid-Range GPUs [0.0]
We introduce SparseAccelerate, a dynamic sparse attention method that adapts its sparsity patterns based on input characteristics.<n> Experimental results show that SparseAccelerate achieves up to a 1.04x reduction in Time-To-First-Token (TTTF) latency at 32K tokens.
arXiv Detail & Related papers (2024-12-09T04:27:03Z) - Squeezed Attention: Accelerating Long Context Length LLM Inference [61.787865959140994]
We propose Squeezed Attention to accelerate applications where a large portion of the input context is fixed.<n>During inference, we compare query tokens from the user input with the centroids to predict which keys from the fixed context are semantically relevant.<n>We also present a hierarchical version of our algorithm which can reduce the complexity of attention from linear to logarithmic with respect to the fixed context length.
arXiv Detail & Related papers (2024-11-14T18:54:19Z) - Correlation-Aware Select and Merge Attention for Efficient Fine-Tuning and Context Length Extension [21.729875191721984]
We introduce correlation-aware selection and merging mechanisms to facilitate efficient sparse attention.
We also propose a novel data augmentation technique involving positional encodings to enhance generalization to unseen positions.
Our method achieves 100% accuracy on the passkey task with a context length of 4M and maintains stable perplexity at a 1M context length.
arXiv Detail & Related papers (2024-10-05T15:59:32Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
We introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome computational and memory obstacles.
Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query.
Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods.
arXiv Detail & Related papers (2024-06-24T15:55:59Z) - SinkLoRA: Enhanced Efficiency and Chat Capabilities for Long-Context Large Language Models [4.497551890206997]
Self-attention mechanism scales quadratically with sequence length.
LongLoRA proposed shifted sparse attention (S(2)-Attn), effectively enabling context extension.
SinkLoRA is still not as efficient as vanilla attention, reaching only 39% of the perplexity improvement compared to full attention.
arXiv Detail & Related papers (2024-06-09T07:23:34Z) - LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory [63.41820940103348]
Self-attention mechanism's computational cost limits its practicality for long sequences.
We propose a new method called LongVQ to compress the global abstraction as a length-fixed codebook.
LongVQ effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues.
arXiv Detail & Related papers (2024-04-17T08:26:34Z) - TransNormerLLM: A Faster and Better Large Language Model with Improved
TransNormer [34.790081960470964]
We present TransNormerLLM, the first linear attention-based Large Language Model (LLM)
We make advanced modifications that include positional embedding, linear attention acceleration, gating mechanisms, tensor normalization, and inference acceleration and stabilization.
We validate our model design through a series of ablations and train models with sizes of 385M, 1B, and 7B on our self-collected corpus.
arXiv Detail & Related papers (2023-07-27T16:45:33Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Combiner: Full Attention Transformer with Sparse Computation Cost [142.10203598824964]
We propose Combiner, which provides full attention capability in each attention head while maintaining low computation complexity.
We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention.
An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach.
arXiv Detail & Related papers (2021-07-12T22:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.