論文の概要: LoSiA: Efficient High-Rank Fine-Tuning via Subnet Localization and Optimization
- arxiv url: http://arxiv.org/abs/2507.04487v2
- Date: Tue, 08 Jul 2025 05:22:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 12:20:17.817826
- Title: LoSiA: Efficient High-Rank Fine-Tuning via Subnet Localization and Optimization
- Title(参考訳): LoSiA: サブネットのローカライゼーションと最適化による高速ファインチューニング
- Authors: Xujia Wang, Yunjia Qi, Bin Xu,
- Abstract要約: LoSiA(Low-Resources Subnet Integration Adaptation)は、トレーニングプロセス中に重要なパラメータを動的にローカライズし最適化する革新的な手法である。
LoSiA-ProはLoSiAのより高速な実装で、LoRAと比較してトレーニングのレイテンシを約27%削減します。
- 参考スコア(独自算出の注目度): 4.242407349635928
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parameter-Efficient Fine-Tuning (PEFT) methods, such as LoRA, significantly reduce the number of trainable parameters by introducing low-rank decomposition matrices. However, existing methods perform extensive matrix multiplications in domain specialization tasks, resulting in computational inefficiency and sub-optimal fine-tuning performance. Hence, we propose LoSiA(Low-Resources Subnet Integration Adaptation), an innovative method that dynamically localizes and optimizes critical parameters during the training process. Specifically, it identifies a sub-network using gradient sparsity analysis and optimizes it as the trainable target. This design enables effective high-rank adaptation by updating only the sub-network parameters, reducing the additional matrix multiplication. We also present LoSiA-Pro, a faster implementation of LoSiA, which reduces the training latency by about $27\%$ compared to LoRA. Extensive evaluations show that our method achieves minimal performance drop compared to full fine-tuning, while requiring the least training time across domain specialization and common-sense reasoning tasks. Further analysis shows that LoSiA also reduces forgetting during continued training.
- Abstract(参考訳): LoRAのようなパラメータ効率の良い微細チューニング(PEFT)法は、低ランク分解行列を導入することにより、トレーニング可能なパラメータの数を著しく削減する。
しかし、既存手法は領域特殊化タスクにおいて広範な行列乗算を行い、計算の非効率性と準最適微調整性能をもたらす。
そこで我々はLoSiA(Low-Resources Subnet Integration Adaptation)を提案する。
具体的には、勾配空間解析を用いてサブネットワークを特定し、トレーニング可能なターゲットとして最適化する。
この設計により、サブネットワークパラメータのみを更新し、追加の行列乗算を減らし、効果的なハイランク適応が可能となる。
また、LoSiAのより高速な実装であるLoSiA-Proも紹介します。
大規模評価の結果,本手法は完全微調整に比べて最小性能の低下を達成でき,ドメインの専門化や常識推論タスクの訓練時間も最小化できることがわかった。
さらなる分析によると、LoSiAは継続トレーニング中の忘れを少なくする。
関連論文リスト
- OSoRA: Output-Dimension and Singular-Value Initialized Low-Rank Adaptation [9.048461365342204]
大規模言語モデル(LLM)のための新しいPEFT法であるOSoRAを提案する。
OSoRAは、微調整中にトレーニング可能なパラメータの数を最小化することで、計算リソースの要求を大幅に削減する。
数学的推論、常識推論、その他のベンチマークの総合的な評価は、OSoRAが最先端の手法と同等または優れた性能を達成していることを示している。
論文 参考訳(メタデータ) (2025-05-20T13:34:06Z) - LORENZA: Enhancing Generalization in Low-Rank Gradient LLM Training via Efficient Zeroth-Order Adaptive SAM [13.180761892449736]
大規模言語モデル(LLM)のためのロバストパラメータ効率細調整法(PEFT)について検討する。
我々はAdam と Sharpness-Aware Minimization (SAM) を組み合わせた AdaZo-SAM という,計算効率のよい新しいフレームワークを提案する。
また,AdaZo-SAMのメモリ効率向上版であるLORENZAという低ランク勾配最適化手法を設計した。
論文 参考訳(メタデータ) (2025-02-26T21:30:34Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) は、PEFT (Efficient Fine Tuning) 法として人気がある。
よりコンパクトで柔軟な表現を可能にする高階Candecomp/Parafac(CP)分解を提案する。
本手法は,比較性能を維持しつつパラメータ数を削減できる。
論文 参考訳(メタデータ) (2024-10-05T06:59:50Z) - Flat-LoRA: Low-Rank Adaptation over a Flat Loss Landscape [52.98187034726091]
フルパラメータ空間の平坦領域に位置する低ランク適応を同定することを目的としたFlat-LoRAを提案する。
また、Flat-LoRAはドメイン内とドメイン外の両方の一般化を改善していることを示す。
論文 参考訳(メタデータ) (2024-09-22T11:24:10Z) - MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning [105.11844150736536]
低ランク適応は、大規模言語モデルのためのパラメータ効率の良い微調整法として人気がある。
トレーニング可能なパラメータ数を同じ数に保ちながら、高階更新を実現するために2乗行列を用いるMoRAと呼ばれる新しい手法を提案する。
本手法はメモリ集約型タスクではLoRAより優れ,他のタスクでは同等のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-05-20T15:48:32Z) - Flora: Low-Rank Adapters Are Secretly Gradient Compressors [30.224822087562163]
低ランク適応(LoRA)は、少ないパラメータをトレーニングすることで最適化状態を低減するために提案される。
LoRAは全体の重量更新行列を低ランクに制限し、モデル性能を制限している。
本稿では,プロジェクション行列を再サンプリングすることで高階更新を実現する Flora を提案する。
論文 参考訳(メタデータ) (2024-02-05T18:50:39Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRAは、線形層に低ランクアダプタを導入することにより、ニューラルネットワーク内のトレーニング可能なパラメータの数を減らすテクニックである。
本稿では,LoRAの効率的な実装のためのRunLoRAフレームワークを提案する。
実験は、言語モデリングネットワーク上で最大28%のスピードアップを示す。
論文 参考訳(メタデータ) (2023-12-06T10:54:34Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。