da4ml: Distributed Arithmetic for Real-time Neural Networks on FPGAs
- URL: http://arxiv.org/abs/2507.04535v1
- Date: Sun, 06 Jul 2025 21:01:32 GMT
- Title: da4ml: Distributed Arithmetic for Real-time Neural Networks on FPGAs
- Authors: Chang Sun, Zhiqiang Que, Vladimir Loncar, Wayne Luk, Maria Spiropulu,
- Abstract summary: We propose an efficient algorithm for implementing constant matrix-vector multiplication (CMVM) operations with distributed arithmetic (DA) on FPGAs.<n>The algorithm achieves resource reduction similar to state-of-the-art algorithms while being significantly faster to compute.<n>We show that the proposed algorithm can reduce on-chip resources by up to a third for realistic, highly quantized neural networks while simultaneously reducing latency.
- Score: 5.979741271992278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks with a latency requirement on the order of microseconds, like the ones used at the CERN Large Hadron Collider, are typically deployed on FPGAs fully unrolled and pipelined. A bottleneck for the deployment of such neural networks is area utilization, which is directly related to the required constant matrix-vector multiplication (CMVM) operations. In this work, we propose an efficient algorithm for implementing CMVM operations with distributed arithmetic (DA) on FPGAs that simultaneously optimizes for area consumption and latency. The algorithm achieves resource reduction similar to state-of-the-art algorithms while being significantly faster to compute. The proposed algorithm is open-sourced and integrated into the \texttt{hls4ml} library, a free and open-source library for running real-time neural network inference on FPGAs. We show that the proposed algorithm can reduce on-chip resources by up to a third for realistic, highly quantized neural networks while simultaneously reducing latency, enabling the implementation of previously infeasible networks.
Related papers
- Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
This paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs.
At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads.
At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient BayesNNs.
arXiv Detail & Related papers (2024-06-20T17:08:42Z) - Queue-aware Network Control Algorithm with a High Quantum Computing Readiness-Evaluated in Discrete-time Flow Simulator for Fat-Pipe Networks [0.0]
We introduce a resource reoccupation algorithm for traffic engineering in wide-area networks.
The proposed optimization algorithm changes traffic steering and resource allocation in case of overloaded transceivers.
We show that our newly introduced network simulator enables analyses of short-time effects like buffering within fat-pipe networks.
arXiv Detail & Related papers (2024-04-05T13:13:02Z) - NeuraLUT: Hiding Neural Network Density in Boolean Synthesizable Functions [2.7086888205833968]
Field-Programmable Gate Array (FPGA) accelerators have proven successful in handling latency- and resource-critical deep neural network (DNN) inference tasks.
We propose relaxing the boundaries of neurons and mapping entire sub-networks to a single LUT.
We validate our proposed method on a known latency-critical task, jet substructure tagging, and on the classical computer vision task, digit classification using MNIST.
arXiv Detail & Related papers (2024-02-29T16:10:21Z) - YFlows: Systematic Dataflow Exploration and Code Generation for
Efficient Neural Network Inference using SIMD Architectures on CPUs [3.1445034800095413]
We address the challenges associated with deploying neural networks on CPUs.
Our novel approach is to use the dataflow of a neural network to explore data reuse opportunities.
Our results show that the dataflow that keeps outputs in SIMD registers consistently yields the best performance.
arXiv Detail & Related papers (2023-10-01T05:11:54Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNet is a framework to bridge the theoretical and practical efficiency gap in dynamic networks.
It integrates three primary dynamic paradigms-spatially adaptive computation, dynamic layer skipping, and dynamic channel skipping.
It can notably reduce the latency of models like ResNet by over 50% on platforms such as V100,3090, and TX2 GPUs.
arXiv Detail & Related papers (2023-08-30T10:57:41Z) - FPGA Resource-aware Structured Pruning for Real-Time Neural Networks [3.294652922898631]
Pruning sparsifies a neural network, reducing the number of multiplications and memory.
We propose a hardware-centric formulation of pruning, by formulating it as a knapsack problem with resource-aware tensor structures.
Proposed method achieves reductions ranging between 55% and 92% in the DSP utilization and up to 81% in BRAM utilization.
arXiv Detail & Related papers (2023-08-09T18:14:54Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - IoV Scenario: Implementation of a Bandwidth Aware Algorithm in Wireless
Network Communication Mode [49.734868032441625]
This paper proposes a bandwidth aware multi domain virtual network embedding algorithm (BA-VNE)
The algorithm is mainly aimed at the problem that users need a lot of bandwidth in wireless communication mode.
In order to improve the performance of the algorithm, we introduce particle swarm optimization (PSO) algorithm.
arXiv Detail & Related papers (2022-02-03T03:34:06Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - NullaNet Tiny: Ultra-low-latency DNN Inference Through Fixed-function
Combinational Logic [4.119948826527649]
Field-programmable gate array (FPGA)-based accelerators are gaining traction as a serious contender to replace graphics processing unit/central processing unit-based platforms.
This paper presents NullaNet Tiny, a framework for constructing resource and energy-efficient, ultra-low-latency FPGA-based neural network accelerators.
arXiv Detail & Related papers (2021-04-07T00:16:39Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - MajorityNets: BNNs Utilising Approximate Popcount for Improved
Efficiency [13.186127108769615]
This paper proposes a smaller, faster, more energy-efficient approximate replacement for the XnorPopcount operation, called XNorMaj.
We show that XNorMaj is up to 2x more resource-efficient than the XnorPopcount operation.
arXiv Detail & Related papers (2020-02-27T04:02:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.