A Lightweight Deep Learning Model for Automatic Modulation Classification using Dual Path Deep Residual Shrinkage Network
- URL: http://arxiv.org/abs/2507.04586v1
- Date: Mon, 07 Jul 2025 00:37:54 GMT
- Title: A Lightweight Deep Learning Model for Automatic Modulation Classification using Dual Path Deep Residual Shrinkage Network
- Authors: Prakash Suman, Yanzhen Qu,
- Abstract summary: Automatic Modulation Classification (AMC) plays a key role in enhancing spectrum efficiency.<n>There is a pressing need for lightweight AMC models that balance low complexity with high classification accuracy.<n>This paper proposes a low-complexity, lightweight deep learning (DL) AMC model optimized for resource-constrained edge devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient spectrum utilization is critical to meeting the growing data demands of modern wireless communication networks. Automatic Modulation Classification (AMC) plays a key role in enhancing spectrum efficiency by accurately identifying modulation schemes in received signals-an essential capability for dynamic spectrum allocation and interference mitigation, particularly in cognitive radio (CR) systems. With the increasing deployment of smart edge devices, such as IoT nodes with limited computational and memory resources, there is a pressing need for lightweight AMC models that balance low complexity with high classification accuracy. This paper proposes a low-complexity, lightweight deep learning (DL) AMC model optimized for resource-constrained edge devices. We introduce a dual-path deep residual shrinkage network (DP-DRSN) with Garrote thresholding for effective signal denoising and design a compact hybrid CNN-LSTM architecture comprising only 27,000 training parameters. The proposed model achieves average classification accuracies of 61.20%, 63.78%, and 62.13% on the RML2016.10a, RML2016.10b, and RML2018.01a datasets, respectively demonstrating a strong balance between model efficiency and classification performance. These results underscore the model's potential for enabling accurate and efficient AMC on-edge devices with limited resources.
Related papers
- Large-Scale Model Enabled Semantic Communication Based on Robust Knowledge Distillation [53.16213723669751]
Large-scale models (LSMs) can be an effective framework for semantic representation and understanding.<n>However, their direct deployment is often hindered by high computational complexity and resource requirements.<n>This paper proposes a novel knowledge distillation based semantic communication framework.
arXiv Detail & Related papers (2025-08-04T07:47:18Z) - Efficient Memristive Spiking Neural Networks Architecture with Supervised In-Situ STDP Method [0.0]
Memristor-based Spiking Neural Networks (SNNs) with temporal spike encoding enable ultra-low-energy computation.<n>This paper presents a circuit-level memristive spiking neural network (SNN) architecture trained using a proposed novel supervised in-situ learning algorithm.
arXiv Detail & Related papers (2025-07-28T17:09:48Z) - Large Language Model-Driven Distributed Integrated Multimodal Sensing and Semantic Communications [5.646293779615063]
We propose a novel large language model (LLM)-driven distributed integrated multimodal sensing and semantic communication framework.<n>Specifically, our system consists of multiple collaborative sensing devices equipped with RF and camera modules.<n> evaluations on a synthetic multi-view RF-visual dataset generated by the Genesis simulation engine show that LLM-DiSAC achieves a good performance.
arXiv Detail & Related papers (2025-05-20T08:00:00Z) - World Model-Based Learning for Long-Term Age of Information Minimization in Vehicular Networks [53.98633183204453]
In this paper, a novel world model-based learning framework is proposed to minimize packet-completeness-aware age of information (CAoI) in a vehicular network.<n>A world model framework is proposed to jointly learn a dynamic model of the mmWave V2X environment and use it to imagine trajectories for learning how to perform link scheduling.<n>In particular, the long-term policy is learned in differentiable imagined trajectories instead of environment interactions.
arXiv Detail & Related papers (2025-05-03T06:23:18Z) - ALWNN Empowered Automatic Modulation Classification: Conquering Complexity and Scarce Sample Conditions [24.59462798452397]
This paper proposes an automatic modulation classification model based on the Adaptive Lightweight Wavelet Neural Network (ALWNN) and the few-shot framework (MALWNN)<n>The ALWNN model, by integrating the adaptive wavelet neural network and depth separable convolution, reduces the number of model parameters and computational complexity.<n> Experiments with MALWNN show its superior performance in few-shot learning scenarios compared to other algorithms.
arXiv Detail & Related papers (2025-03-24T06:14:33Z) - BiLSTM and Attention-Based Modulation Classification of Realistic Wireless Signals [2.0650230600617534]
The proposed model exploits multiple representations of the wireless signal as inputs to the network.
An attention layer is used after the BiLSTM layer to emphasize the important temporal features.
The experimental results on the recent and realistic RML22 dataset demonstrate the superior performance of the proposed model with an accuracy up to around 99%.
arXiv Detail & Related papers (2024-08-14T01:17:19Z) - MoE-AMC: Enhancing Automatic Modulation Classification Performance Using
Mixture-of-Experts [2.6764607949560593]
MoE-AMC is a novel Mixture-of-Experts (MoE) based model crafted to address Automatic Modulation Classification (AMC) in a well-balanced manner.
MoE-AMC seamlessly combines the strengths of LSRM for handling low SNR signals and HSRM for high SNR signals.
Experiments show that MoE-AMC achieved an average classification accuracy of 71.76% across different SNR levels, surpassing the performance of previous SOTA models by nearly 10%.
arXiv Detail & Related papers (2023-12-04T19:31:15Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - An Efficient Deep Learning Model for Automatic Modulation Recognition
Based on Parameter Estimation and Transformation [3.3941243094128035]
This letter proposes an efficient DL-AMR model based on phase parameter estimation and transformation.
Our model is more competitive in training time and test time than the benchmark models with similar recognition accuracy.
arXiv Detail & Related papers (2021-10-11T03:28:28Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.