論文の概要: VaxPulse: Monitoring of Online Public Concerns to Enhance Post-licensure Vaccine Surveillance
- arxiv url: http://arxiv.org/abs/2507.04656v1
- Date: Mon, 07 Jul 2025 04:18:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.274529
- Title: VaxPulse: Monitoring of Online Public Concerns to Enhance Post-licensure Vaccine Surveillance
- Title(参考訳): VaxPulse: ライセンス後ワクチンサーベイランスの強化に向けたオンライン公衆の懸念の監視
- Authors: Muhammad Javed, Sedigh Khademi, Joanne Hickman, Jim Buttery, Hazel Clothier, Gerardo Luis Dimaguila,
- Abstract要約: 我々は,ヴィクトリアのワクチン安全サービスSAEFVICの報告監視システムをいかに強化したかを説明する。
多段階のフレームワークであるVaxPulseを用いて、免疫後の有害事象と感情分析を統合する。
我々は、民族言語コミュニティにまたがる懸念を階層化するために、非英語言語に対処する必要性を強調している。
- 参考スコア(独自算出の注目度): 0.3958317527488535
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The recent vaccine-related infodemic has amplified public concerns, highlighting the need for proactive misinformation management. We describe how we enhanced the reporting surveillance system of Victoria's vaccine safety service, SAEFVIC, through the incorporation of new information sources for public sentiment analysis, topics of discussion, and hesitancies about vaccinations online. Using VaxPulse, a multi-step framework, we integrate adverse events following immunisation (AEFI) with sentiment analysis, demonstrating the importance of contextualising public concerns. Additionally, we emphasise the need to address non-English languages to stratify concerns across ethno-lingual communities, providing valuable insights for vaccine uptake strategies and combating mis/disinformation. The framework is applied to real-world examples and a case study on women's vaccine hesitancy, showcasing its benefits and adaptability by identifying public opinion from online media.
- Abstract(参考訳): 最近のワクチン関連インフォデミックは公衆の懸念を増幅し、積極的な誤情報管理の必要性を強調している。
ビクトリア州のワクチン安全サービスSAEFVICの報告監視システムを、公衆の感情分析、議論の話題、オンラインでのワクチン接種に関するためらう新たな情報ソースを組み込むことによって、どのように強化したかを説明する。
多段階の枠組みであるVaxPulseを用いて、免疫(AEFI)による有害事象を感情分析と統合し、公衆の懸念を文脈化することの重要性を実証する。
さらに、非英語の言語に対処し、民族言語コミュニティにまたがる懸念を階層化し、ワクチンの取り込み戦略や誤情報と戦うための貴重な洞察を提供する必要性を強調した。
このフレームワークは実世界の事例に適用され、オンラインメディアから世論を識別することで、女性のワクチンの忍耐力と適応性を示すケーススタディである。
関連論文リスト
- Public Discourse about COVID-19 Vaccinations: A Computational Analysis of the Relationship between Public Concerns and Policies [3.203095675418499]
予防接種キャンペーンの展開に伴い、ドイツ語を話す地域は他のヨーロッパ地域よりもはるかに低い予防接種率を示した。
Twitter上では、新型コロナウイルスの重症度やワクチンの有効性、安全性に対する懐疑論が話題となっている。
パンデミックの後期段階では、政策が実施され、無ワクチンの市民の自由が制限されたとき、ワクチン接種の増加が観察された。
論文 参考訳(メタデータ) (2024-05-07T15:31:13Z) - Event Detection from Social Media for Epidemic Prediction [76.90779562626541]
ソーシャルメディア投稿から疫病関連事象を抽出・分析する枠組みを構築した。
実験では、新型コロナウイルスベースのSPEEDで訓練されたEDモデルが、3つの目に見えない流行の流行を効果的に検出する方法が明らかにされている。
モンキーポックスのWHO流行宣言より4~9週間早く,抽出した事象の報告が急激な増加を示すことを示す。
論文 参考訳(メタデータ) (2024-04-02T06:31:17Z) - Doctors vs. Nurses: Understanding the Great Divide in Vaccine Hesitancy
among Healthcare Workers [64.1526243118151]
医者は新型コロナウイルスワクチンに対して全体的に陽性であることがわかりました。
医師は新型ワクチンよりもワクチンの有効性を懸念している。
看護婦は子供に対する潜在的な副作用にもっと注意を払う。
論文 参考訳(メタデータ) (2022-09-11T14:22:16Z) - Dynamics and triggers of misinformation on vaccines [0.552480439325792]
われわれは、さまざまなソーシャルメディアプラットフォーム(Facebook、Instagram、Twitter、YouTube)におけるイタリアのワクチンに関する6年間の議論を分析している。
われわれはまず、ニュース制作時系列の象徴的転送エントロピー分析を用いて、ワクチンに関する議題を慎重に推進する、疑わしい、あるいは信頼できるソースのカテゴリを決定する。
次に、伝達されたスタンスに基づいてワクチン関連コンテンツを正確に分類し、話題を議論する深層学習モデルを活用する。
論文 参考訳(メタデータ) (2022-07-25T15:35:48Z) - "Double vaccinated, 5G boosted!": Learning Attitudes towards COVID-19
Vaccination from Social Media [4.178929174617172]
ソーシャルメディア上でのテキスト投稿を利用して、利用者の接種姿勢をほぼリアルタイムで抽出し追跡する。
我々は、ユーザのソーシャルネットワーク隣人の最近の投稿を統合して、ユーザの真の態度を検出する。
Twitterの注釈付きデータセットに基づいて、我々のフレームワークからインスタンス化されたモデルは、姿勢抽出のパフォーマンスを最大23%向上させることができる。
論文 参考訳(メタデータ) (2022-06-27T17:04:56Z) - Disentangled Learning of Stance and Aspect Topics for Vaccine Attitude
Detection in Social Media [40.61499595293957]
VADetと呼ばれるワクチンの姿勢検出のための新しい半教師付きアプローチを提案する。
VADetは、歪んだ姿勢とアスペクトトピックを学習することができ、スタンス検出とツイートクラスタリングの両方で、既存のアスペクトベースの感情分析モデルより優れています。
論文 参考訳(メタデータ) (2022-05-06T15:24:33Z) - Insta-VAX: A Multimodal Benchmark for Anti-Vaccine and Misinformation
Posts Detection on Social Media [32.252687203366605]
ソーシャルメディア上の抗ワクチンポストは、混乱を招き、ワクチンに対する大衆の信頼を低下させることが示されている。
Insta-VAXは、ヒトワクチンに関連する64,957のInstagram投稿のサンプルからなる、新しいマルチモーダルデータセットである。
論文 参考訳(メタデータ) (2021-12-15T20:34:57Z) - Classifying vaccine sentiment tweets by modelling domain-specific
representation and commonsense knowledge into context-aware attentive GRU [9.8215089151757]
ワクチンのヘシタシーと拒絶はワクチン接種率の低いクラスターを生じさせ、ワクチン接種プログラムの有効性を低下させる。
ソーシャルメディアは、地理的な位置を含み、ワクチンに関する懸念を詳述することで、ワクチンの受け入れに対する新たなリスクを見積もる機会を提供する。
ワクチン関連ツイートなどのソーシャルメディア投稿を分類する手法では、一般的なドメインテキストで訓練された言語モデル(LM)を使用する。
本稿では、ワクチン関連ツイートで訓練されたドメイン固有LMを用いて相互接続されたコンポーネントで構成された新しいエンドツーエンドフレームワークについて、コンテキスト対応の双方向ゲート再帰ネットワーク(CK-BiGRU)にコモンセンス知識をモデル化する。
論文 参考訳(メタデータ) (2021-06-17T15:16:08Z) - Digital Ariadne: Citizen Empowerment for Epidemic Control [55.41644538483948]
新型コロナウイルスの危機は、1918年のH1N1パンデミック以来、公衆衛生にとって最も危険な脅威である。
技術支援による位置追跡と接触追跡は、広く採用されれば、感染症の拡散を抑えるのに役立つかもしれない。
個人のデバイス上での自発的な位置情報とBluetoothトラッキングに基づいて、"diAry"や"digital Ariadne"と呼ばれるツールを提示する。
論文 参考訳(メタデータ) (2020-04-16T15:53:42Z) - Falling into the Echo Chamber: the Italian Vaccination Debate on Twitter [65.7192861893042]
われわれは、Twitter上での予防接種に関する議論が、予防接種ヘシタントに対する潜在的な不安にどのように影響するかを調査する。
予防接種懐疑派や擁護派が独自の「エチョ室」に居住していることが判明した。
これらのエコーチャンバーの中心には熱心な支持者がいて、高い精度のネットワークとコンテンツベースの分類器を構築しています。
論文 参考訳(メタデータ) (2020-03-26T13:55:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。