論文の概要: FIDESlib: A Fully-Fledged Open-Source FHE Library for Efficient CKKS on GPUs
- arxiv url: http://arxiv.org/abs/2507.04775v1
- Date: Mon, 07 Jul 2025 08:51:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.339689
- Title: FIDESlib: A Fully-Fledged Open-Source FHE Library for Efficient CKKS on GPUs
- Title(参考訳): FIDESlib:GPU上で効率的なCKKSを実現するオープンソースFHEライブラリ
- Authors: Carlos Agulló-Domingo, Óscar Vera-López, Seyda Guzelhan, Lohit Daksha, Aymane El Jerari, Kaustubh Shivdikar, Rashmi Agrawal, David Kaeli, Ajay Joshi, José L. Abellán,
- Abstract要約: FIDESlibは、最初のオープンソースのサーバサイドCKKS GPUライブラリである。
ブートストラッピングでは、FIDESlibはAVX最適化OpenFHE実装よりも70倍のスピードアップを実現している。
- 参考スコア(独自算出の注目度): 0.7146800600221728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Word-wise Fully Homomorphic Encryption (FHE) schemes, such as CKKS, are gaining significant traction due to their ability to provide post-quantum-resistant, privacy-preserving approximate computing; an especially desirable feature in Machine-Learning-as-a-Service (MLaaS) cloud-computing paradigms. OpenFHE is a leading CPU-based FHE library with robust CKKS operations, but its server-side performance is not yet sufficient for practical cloud deployment. As GPU computing becomes more common in data centers, many FHE libraries are adding GPU support. However, integrating an efficient GPU backend into OpenFHE is challenging. While OpenFHE uses a Hardware Abstraction Layer (HAL), its flexible architecture sacrifices performance due to the abstraction layers required for multi-scheme and multi-backend compatibility. In this work, we introduce FIDESlib, the first open-source server-side CKKS GPU library that is fully interoperable with well-established client-side OpenFHE operations. Unlike other existing open-source GPU libraries, FIDESlib provides the first implementation featuring heavily optimized GPU kernels for all CKKS primitives, including bootstrapping. Our library also integrates robust benchmarking and testing, ensuring it remains adaptable to further optimization. Furthermore, its software architecture is designed to support extensions to a multi-GPU backend for enhanced acceleration. Our experiments across various GPU systems and the leading open-source CKKS library to date, Phantom, show that FIDESlib offers superior performance and scalability. For bootstrapping, FIDESlib achieves no less than 70x speedup over the AVX-optimized OpenFHE implementation.
- Abstract(参考訳): ワードワイドの完全同型暗号化(FHE)スキーム(CKKSなど)は、量子後耐性でプライバシ保護の近似コンピューティングを提供する能力、特にMLaaS(Machine-Learning-as-a-Service)クラウドコンピューティングパラダイムで好まれる機能などによって、大きな注目を集めている。
OpenFHEは、堅牢なCKKS操作を備えたCPUベースのFHEライブラリである。
GPUコンピューティングがデータセンターで一般的になるにつれて、多くのFHEライブラリがGPUのサポートを追加している。
しかし、効率的なGPUバックエンドをOpenFHEに統合することは難しい。
OpenFHEはハードウェア抽象化レイヤ(HAL)を使用しているが、その柔軟なアーキテクチャはマルチスキーマとマルチバックエンドの互換性に必要な抽象化レイヤのためにパフォーマンスを犠牲にしている。
本稿では,オープンソースのサーバサイドCKKS GPUライブラリであるFIDESlibを紹介する。
他の既存のオープンソースGPUライブラリとは異なり、FIDESlibはブートストラップを含むすべてのCKKSプリミティブに高度に最適化されたGPUカーネルを備えた最初の実装を提供する。
当社のライブラリは、堅牢なベンチマークとテストも統合し、さらなる最適化に適応できるようにしています。
さらに、そのソフトウェアアーキテクチャは、アクセラレーションを強化するために、マルチGPUバックエンドの拡張をサポートするように設計されている。
さまざまなGPUシステムとオープンソースのCKKSライブラリであるPhantomに対する我々の実験は、FIDESlibが優れたパフォーマンスとスケーラビリティを提供することを示している。
ブートストラッピングでは、FIDESlibはAVX最適化OpenFHE実装よりも70倍のスピードアップを実現している。
関連論文リスト
- NGPU-LM: GPU-Accelerated N-Gram Language Model for Context-Biasing in Greedy ASR Decoding [54.88765757043535]
この研究は、統計的なn-gram言語モデルのデータ構造を再考し、GPU最適化推論の高速かつ並列な操作を可能にする。
我々のアプローチは NGPU-LM と呼ばれ、7% 未満の計算オーバーヘッドを持つ全ての主要な ASR モデルに対して、カスタマイズ可能なgreedy decoding を導入している。
提案手法は,ビーム探索による顕著な遅延を回避しつつ,greedy と beam search の精度ギャップの50%以上を排除できる。
論文 参考訳(メタデータ) (2025-05-28T20:43:10Z) - CAT: A GPU-Accelerated FHE Framework with Its Application to High-Precision Private Dataset Query [0.51795041186793]
本稿では,オープンソースGPUアクセラレーションによる完全同型暗号(FHE)フレームワークCATを紹介する。
emphCATは、コア数学の基礎、事前計算された要素と複合操作のブリッジ、FHE演算子のAPIアクセス可能なレイヤという3層アーキテクチャを備えている。
本フレームワークでは,CKKS,BFV,BGVの3種類のFHEスキームを実装した。
論文 参考訳(メタデータ) (2025-03-28T08:20:18Z) - Cheddar: A Swift Fully Homomorphic Encryption Library for CUDA GPUs [2.613335121517245]
FHE(Fully homomorphic encryption)は、クラウドコンピューティングにおけるセキュリティとプライバシの問題を解決するための暗号化技術である。
FHEは、暗号化されたデータを処理するための膨大な計算オーバーヘッドを導入し、FHEワークロードは暗号化されていないワークロードよりも2~6桁遅くなりました。
本稿では,GPUのFHEライブラリであるCheddarを提案する。
論文 参考訳(メタデータ) (2024-07-17T23:49:18Z) - JORA: JAX Tensor-Parallel LoRA Library for Retrieval Augmented Fine-Tuning [16.86356520836045]
本稿では,Llama-2モデルのPEFT互換微調整のための新しいフレームワークについて紹介する。
我々のフレームワークは、JAXのジャスト・イン・タイム(JIT)コンパイルと、効率的なリソース管理のためにテンソルシャーディングを独自に利用しています。
実験では,Hugging Face/DeepSpeed実装を4GPUで実装するのに対して,GPUあたりのVRAMは半分以下であるのに対して,ランタイムでは12倍以上の改善が見られた。
論文 参考訳(メタデータ) (2024-03-17T23:02:04Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - PARIS and ELSA: An Elastic Scheduling Algorithm for Reconfigurable
Multi-GPU Inference Servers [0.9854614058492648]
NVIDIAのAmpere GPUアーキテクチャは、1つの大きなモノリシックGPUを複数の小さな"GPUパーティション"に"再構成"する機能を提供する。
本稿では,この新しいGPUアーキテクチャを再構成性で検討し,高性能なマルチGPUML推論サーバを開発する。
論文 参考訳(メタデータ) (2022-02-27T23:30:55Z) - PLSSVM: A (multi-)GPGPU-accelerated Least Squares Support Vector Machine [68.8204255655161]
Support Vector Machines (SVM) は機械学習で広く使われている。
しかし、現代的で最適化された実装でさえ、最先端ハードウェア上の大きな非自明な高密度データセットにはうまくスケールしない。
PLSSVMはLVMのドロップイン代替として使用できる。
論文 参考訳(メタデータ) (2022-02-25T13:24:23Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
本稿では,Deep Learningプリミティブの高性能実装を自動的に生成するコンパイラアルゴリズムを提案する。
我々は多面体モデルを用いた新しいデータ再利用分析アルゴリズムを開発した。
また、このようなハイブリッドコンパイラとライブラリ使用の最小限のアプローチが、最先端のパフォーマンスをもたらすことを示す。
論文 参考訳(メタデータ) (2020-06-02T06:44:09Z) - Kernel Operations on the GPU, with Autodiff, without Memory Overflows [5.669790037378094]
KeOpsライブラリは、数学的公式によってエントリが与えられるテンソルに対して、高速でメモリ効率のよいGPUサポートを提供する。
KeOpsは、カーネルおよび幾何学的アプリケーションのためのテンソル中心ライブラリの大きなボトルネックであるメモリ消費を緩和する。
KeOpsは、最適化されたC++/CUDAスキームと、Python(NumpyとPyTorch)、Matlab、Rのバインダーを組み合わせる。
論文 参考訳(メタデータ) (2020-03-27T08:54:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。