Sure Convergence and Constructive Universal Approximation for Multi-Layer Neural Networks
- URL: http://arxiv.org/abs/2507.04779v1
- Date: Mon, 07 Jul 2025 08:55:28 GMT
- Title: Sure Convergence and Constructive Universal Approximation for Multi-Layer Neural Networks
- Authors: Chien-Ming Chi,
- Abstract summary: We propose a new neural network model, 01Neuro, built on indicator activation neurons.<n>Its boosted variant possesses two key statistical properties: Sure Convergence and Constructive Universal Approximation.<n>In the infinite sample setting, the model can approximate any finite sum of measurable functions, each depending on only k out of p input features.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new neural network model, 01Neuro, built on indicator activation neurons. Its boosted variant possesses two key statistical properties: (1) Sure Convergence, where model optimization can be achieved with high probability given sufficient computational resources; and (2) Constructive Universal Approximation: In the infinite sample setting, the model can approximate any finite sum of measurable functions, each depending on only k out of p input features, provided the architecture is properly tuned. Unlike most universal approximation results that are agnostic to training procedures, our guarantees are directly tied to the model's explicit construction and optimization algorithm. To improve prediction stability, we integrate stochastic training and bagging into the boosted 01Neuro framework. Empirical evaluations on simulated and real-world tabular datasets with small to medium sample sizes highlight its strengths: effective approximation of interaction components (multiplicative terms), stable prediction performance (comparable to Random Forests), robustness to many noisy features, and insensitivity to feature scaling. A major limitation of the current implementation of boosted 01Neuro is its higher computational cost, which is approximately 5 to 30 times that of Random Forests and XGBoost.
Related papers
- No Free Lunch From Random Feature Ensembles [23.661623767100384]
Given a budget on total model size, one must decide whether to train a single, large neural network or to combine the predictions of many smaller networks.<n>We prove that when a fixed number of trainable parameters are partitioned among $K$ independently trained models, $K=1$ achieves optimal performance.<n>We identify conditions on the kernel and task eigenstructure under which ensembles can achieve near-optimal scaling laws.
arXiv Detail & Related papers (2024-12-06T20:55:27Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - The limitation of neural nets for approximation and optimization [0.0]
We are interested in assessing the use of neural networks as surrogate models to approximate and minimize objective functions in optimization problems.
Our study begins by determining the best activation function for approximating the objective functions of popular nonlinear optimization test problems.
arXiv Detail & Related papers (2023-11-21T00:21:15Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience.
We show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one.
arXiv Detail & Related papers (2022-11-16T00:11:04Z) - Structured Optimal Variational Inference for Dynamic Latent Space Models [16.531262817315696]
We consider a latent space model for dynamic networks, where our objective is to estimate the pairwise inner products plus the intercept of the latent positions.
To balance posterior inference and computational scalability, we consider a structured mean-field variational inference framework.
arXiv Detail & Related papers (2022-09-29T22:10:42Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Neural Inverse Transform Sampler [4.061135251278187]
We show that when modeling conditional densities with a neural network, $Z$ can be exactly and efficiently computed.
We introduce the textbfNeural Inverse Transform Sampler (NITS), a novel deep learning framework for modeling and sampling from general, multidimensional, compactly-supported probability densities.
arXiv Detail & Related papers (2022-06-22T15:28:29Z) - A Free Lunch with Influence Functions? Improving Neural Network
Estimates with Concepts from Semiparametric Statistics [41.99023989695363]
We explore the potential for semiparametric theory to be used to improve neural networks and machine learning algorithms.
We propose a new neural network method MultiNet, which seeks the flexibility and diversity of an ensemble using a single architecture.
arXiv Detail & Related papers (2022-02-18T09:35:51Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.