論文の概要: Machine Learning from Explanations
- arxiv url: http://arxiv.org/abs/2507.04788v1
- Date: Mon, 07 Jul 2025 09:09:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.345725
- Title: Machine Learning from Explanations
- Title(参考訳): 説明からの機械学習
- Authors: Jiashu Tao, Reza Shokri,
- Abstract要約: より小さなデータセット上で信頼性の高い分類モデルをトレーニングするための革新的なアプローチを導入する。
提案手法は,モデル予測精度の向上と,説明に合うように注意を精査する2段階の学習サイクルを中心に展開する。
トレーニングサイクルがより正確で信頼性の高いモデルへの収束を早めることを示す。
- 参考スコア(独自算出の注目度): 17.28638946021444
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Acquiring and training on large-scale labeled data can be impractical due to cost constraints. Additionally, the use of small training datasets can result in considerable variability in model outcomes, overfitting, and learning of spurious correlations. A crucial shortcoming of data labels is their lack of any reasoning behind a specific label assignment, causing models to learn any arbitrary classification rule as long as it aligns data with labels. To overcome these issues, we introduce an innovative approach for training reliable classification models on smaller datasets, by using simple explanation signals such as important input features from labeled data. Our method centers around a two-stage training cycle that alternates between enhancing model prediction accuracy and refining its attention to match the explanations. This instructs models to grasp the rationale behind label assignments during their learning phase. We demonstrate that our training cycle expedites the convergence towards more accurate and reliable models, particularly for small, class-imbalanced training data, or data with spurious features.
- Abstract(参考訳): 大規模ラベル付きデータの取得とトレーニングは、コスト制約のため現実的ではない。
さらに、小さなトレーニングデータセットを使用することで、モデルの成果、過度な適合、スプリアス相関の学習にかなりのばらつきをもたらす可能性がある。
データラベルの重大な欠点は、特定のラベル割り当ての背後にある推論の欠如である。
これらの課題を克服するために,ラベル付きデータから重要な入力特徴などの簡単な説明信号を用いて,より小さなデータセット上で信頼性の高い分類モデルをトレーニングするための革新的なアプローチを導入する。
提案手法は,モデル予測精度の向上と,説明に合うように注意を精査する2段階の学習サイクルを中心に展開する。
これにより、学習期間中にラベル割り当ての背後にある理論的根拠をモデルに理解させる。
トレーニングサイクルがより正確で信頼性の高いモデル,特に小規模でクラス不均衡なトレーニングデータ,あるいは突発的な特徴を持つデータへの収束を早めることを示す。
関連論文リスト
- Learning from Noisy Labels via Self-Taught On-the-Fly Meta Loss Rescaling [6.861041888341339]
そこで本研究では,リウェイトトレーニングサンプルに対する非教師なしメタロス再スケーリングを提案する。
我々は,対話モデリングの課題を生かした,初級訓練データの再重み付けを試みている。
我々の戦略は、ノイズの多いクリーンなデータに直面し、クラス不均衡を処理し、ノイズの多いラベルへの過度な適合を防ぐ。
論文 参考訳(メタデータ) (2024-12-17T14:37:50Z) - For Better or For Worse? Learning Minimum Variance Features With Label Augmentation [7.183341902583164]
本研究では,データ拡張手法のラベル拡張の側面が果たす役割を解析する。
まず、ラベル拡張で訓練されたバイナリ分類データの線形モデルが、データ内の最小分散特性のみを学ぶことを証明した。
次に, 非線形モデルや一般データ分布においても, ラベルの平滑化や混合損失はモデル出力分散の関数によって低く抑えられることを示す。
論文 参考訳(メタデータ) (2024-02-10T01:36:39Z) - Clarify: Improving Model Robustness With Natural Language Corrections [59.041682704894555]
モデルを教える標準的な方法は、大量のデータを提供することです。
このアプローチは、データ内の誤解を招く信号を拾うため、モデルに誤ったアイデアを教えることが多い。
モデル誤解をインタラクティブに修正するためのインターフェースと手法であるClarifyを提案する。
論文 参考訳(メタデータ) (2024-02-06T05:11:38Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - A Benchmark Generative Probabilistic Model for Weak Supervised Learning [2.0257616108612373]
アノテーションの負担を軽減するために、弱監視学習アプローチが開発されている。
遅延変数モデル(PLVM)が4つのデータセット間で最先端のパフォーマンスを実現することを示す。
論文 参考訳(メタデータ) (2023-03-31T07:06:24Z) - Constructing Balance from Imbalance for Long-tailed Image Recognition [50.6210415377178]
多数派(頭)クラスと少数派(尾)クラスの不均衡は、データ駆動のディープニューラルネットワークを著しく歪ませる。
従来の手法では、データ分散、特徴空間、モデル設計の観点からデータ不均衡に対処していた。
ラベル空間を段階的に調整し,ヘッドクラスとテールクラスを分割することで,簡潔なパラダイムを提案する。
提案モデルでは,特徴評価手法も提供し,長期的特徴学習の道を開く。
論文 参考訳(メタデータ) (2022-08-04T10:22:24Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z) - Self-Tuning for Data-Efficient Deep Learning [75.34320911480008]
セルフチューニングは、データ効率のよいディープラーニングを可能にする新しいアプローチである。
ラベル付きおよびラベルなしデータの探索と事前訓練されたモデルの転送を統一する。
SSLとTLの5つのタスクをシャープなマージンで上回ります。
論文 参考訳(メタデータ) (2021-02-25T14:56:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。