論文の概要: HGNet: High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention Network for Colorectal Polyp Detection
- arxiv url: http://arxiv.org/abs/2507.04880v1
- Date: Mon, 07 Jul 2025 11:09:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.392014
- Title: HGNet: High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention Network for Colorectal Polyp Detection
- Title(参考訳): HGNet:大腸ポリープ検出のための高次空間認識ハイパーグラフとマルチスケールコンテキスト注意ネットワーク
- Authors: Xiaofang Liu, Lingling Sun, Xuqing Zhang, Yuannong Ye, Bin zhao,
- Abstract要約: HGNetは高次空間認識ハイパーグラフとマルチスケールコンテキストアテンションを統合している。
HGNetは94%の精度、90.6%のリコール、90%のmAP@0.5を達成し、小さな病変の分化と臨床的解釈性を著しく改善した。
- 参考スコア(独自算出の注目度): 8.385970320948024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Colorectal cancer (CRC) is closely linked to the malignant transformation of colorectal polyps, making early detection essential. However, current models struggle with detecting small lesions, accurately localizing boundaries, and providing interpretable decisions. To address these issues, we propose HGNet, which integrates High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention. Key innovations include: (1) an Efficient Multi-Scale Context Attention (EMCA) module to enhance lesion feature representation and boundary modeling; (2) the deployment of a spatial hypergraph convolution module before the detection head to capture higher-order spatial relationships between nodes; (3) the application of transfer learning to address the scarcity of medical image data; and (4) Eigen Class Activation Map (Eigen-CAM) for decision visualization. Experimental results show that HGNet achieves 94% accuracy, 90.6% recall, and 90% mAP@0.5, significantly improving small lesion differentiation and clinical interpretability. The source code will be made publicly available upon publication of this paper.
- Abstract(参考訳): 大腸癌(CRC)は大腸ポリープの悪性化と密接に関連しており、早期発見が不可欠である。
しかし、現在のモデルは小さな病変を検出し、境界を正確に特定し、解釈可能な決定を提供するのに苦労している。
これらの問題に対処するために,高次空間認識ハイパーグラフとマルチスケールコンテキストアテンションを統合したHGNetを提案する。
主なイノベーションは,(1) 病変の特徴表現と境界モデリングを強化するための効率的なマルチスケールコンテキスト注意(EMCA)モジュール,(2) 検出ヘッドの前に空間ハイパーグラフの畳み込みモジュールを配置してノード間の高次空間関係を捉えること,(3) 医療画像データの不足に対処するための転送学習の適用,(4) 決定視覚化のための固有クラス活性化マップ(Eigen-CAM)である。
実験の結果、HGNetは94%の精度、90.6%のリコール、90%のmAP@0.5を達成し、小さな病変の分化と臨床的解釈性を著しく改善した。
ソースコードは、この記事の公開時に公開される。
関連論文リスト
- GRU-Net: Gaussian Attention Aided Dense Skip Connection Based MultiResUNet for Breast Histopathology Image Segmentation [24.85210810502592]
本稿では病理組織像分割のためのMultiResU-Netの修正版を提案する。
複雑な機能を複数のスケールで分析し、セグメント化できるため、バックボーンとして選択される。
乳がんの病理組織像データセットの多様性について検討した。
論文 参考訳(メタデータ) (2024-06-12T19:17:17Z) - BetterNet: An Efficient CNN Architecture with Residual Learning and Attention for Precision Polyp Segmentation [0.6062751776009752]
本研究では,ポリプセグメンテーションの精度を高めるために,残差学習と注意法を組み合わせた畳み込みニューラルネットワークアーキテクチャであるBetterNetを提案する。
BetterNetは、ポリープの検出と癌の早期認識を強化するために、コンピュータ支援診断技術を統合することを約束している。
論文 参考訳(メタデータ) (2024-05-05T21:08:49Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - AttResDU-Net: Medical Image Segmentation Using Attention-based Residual
Double U-Net [0.0]
本稿では,既存の医用画像セグメンテーションネットワークを改善したアテンションベース残留Double U-Netアーキテクチャ(AttResDU-Net)を提案する。
CVC clinic-DB、ISIC 2018、2018 Data Science Bowlの3つのデータセットで実験を行い、それぞれ94.35%、91.68%、92.45%のDice Coefficientスコアを得た。
論文 参考訳(メタデータ) (2023-06-25T14:28:08Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
ポリープセグメンテーションのための障害対応動的ネットワーク(LDNet)を提案する。
従来のU字型エンコーダ・デコーダ構造であり、動的カーネル生成と更新スキームが組み込まれている。
この単純だが効果的なスキームは、我々のモデルに強力なセグメンテーション性能と一般化能力を与える。
論文 参考訳(メタデータ) (2023-01-12T09:53:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans [0.0]
高分解能スライドスキャンにおけるマルチスケール腫瘍(キメラ細胞)検出アルゴリズムを提案する。
提案手法では,CNNの異なる層における有効受容場を改良し,幅広いスケールの物体を1つの前方通過で検出する。
論文 参考訳(メタデータ) (2020-10-01T18:56:46Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
本稿では,皮膚病変のセグメンテーションを改善するために,Dual Objective Networks (DONet) という,シンプルで効果的なフレームワークを提案する。
我々のDONetは2つの対称デコーダを採用し、異なる目標に近づくための異なる予測を生成する。
皮膚内視鏡画像における多種多様な病変のスケールと形状の課題に対処するために,再帰的コンテキスト符号化モジュール(RCEM)を提案する。
論文 参考訳(メタデータ) (2020-08-19T06:02:46Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
大腸内視鏡画像の高精度なポリープ分割のための並列リバースアテンションネットワーク(PraNet)を提案する。
並列部分復号器(PPD)を用いて,まず高層層に特徴を集約する。
さらに,エリアとバウンダリの関連性を確立するために,リバースアテンション(RA)モジュールを用いて境界キューをマイニングする。
論文 参考訳(メタデータ) (2020-06-13T08:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。