Hear-Your-Click: Interactive Object-Specific Video-to-Audio Generation
- URL: http://arxiv.org/abs/2507.04959v2
- Date: Sun, 13 Jul 2025 09:31:19 GMT
- Title: Hear-Your-Click: Interactive Object-Specific Video-to-Audio Generation
- Authors: Yingshan Liang, Keyu Fan, Zhicheng Du, Yiran Wang, Qingyang Shi, Xinyu Zhang, Jiasheng Lu, Peiwu Qin,
- Abstract summary: We introduce Hear-Your-Click, an interactive V2A framework enabling users to generate sounds for specific objects by clicking on the frame.<n>To achieve this, we propose Object-aware Contrastive Audio-Visual Fine-tuning (OCAV) with a Mask-guided Visual (MVE) to obtain object-level visual features aligned with audio.<n>To measure audio-visual correspondence, we designed a new evaluation metric, the CAV score.
- Score: 6.631248829195371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video-to-audio (V2A) generation shows great potential in fields such as film production. Despite significant advances, current V2A methods relying on global video information struggle with complex scenes and generating audio tailored to specific objects. To address these limitations, we introduce Hear-Your-Click, an interactive V2A framework enabling users to generate sounds for specific objects by clicking on the frame. To achieve this, we propose Object-aware Contrastive Audio-Visual Fine-tuning (OCAV) with a Mask-guided Visual Encoder (MVE) to obtain object-level visual features aligned with audio. Furthermore, we tailor two data augmentation strategies, Random Video Stitching (RVS) and Mask-guided Loudness Modulation (MLM), to enhance the model's sensitivity to segmented objects. To measure audio-visual correspondence, we designed a new evaluation metric, the CAV score. Extensive experiments demonstrate that our framework offers more precise control and improves generation performance across various metrics. Project Page: https://github.com/SynapGrid/Hear-Your-Click
Related papers
- SpA2V: Harnessing Spatial Auditory Cues for Audio-driven Spatially-aware Video Generation [50.03810359300705]
SpA2V decomposes the generation process into two stages: audio-guided video planning and layout-grounded video generation.<n>We show that SpA2V excels in generating realistic videos with semantic and spatial alignment to the input audios.
arXiv Detail & Related papers (2025-08-01T17:05:04Z) - Revisiting Audio-Visual Segmentation with Vision-Centric Transformer [60.83798235788669]
Audio-Visual (AVS) aims to segment sound-producing objects in video frames based on the associated audio signal.<n>We propose a new Vision-Centric Transformer framework that leverages vision-derived queries to iteratively fetch corresponding audio and visual information.<n>Our framework achieves new state-of-the-art performances on three subsets of the AVSBench dataset.
arXiv Detail & Related papers (2025-06-30T08:40:36Z) - AVS-Mamba: Exploring Temporal and Multi-modal Mamba for Audio-Visual Segmentation [62.682428307810525]
We introduce AVS-Mamba, a selective state space model to address the audio-visual segmentation task.<n>Our framework incorporates two key components for video understanding and cross-modal learning.<n>Our approach achieves new state-of-the-art results on the AVSBench-object and AVS-semantic datasets.
arXiv Detail & Related papers (2025-01-14T03:20:20Z) - AV-Link: Temporally-Aligned Diffusion Features for Cross-Modal Audio-Video Generation [49.6922496382879]
We propose a unified framework for Video-to-Audio (A2V) and Audio-to-Video (A2V) generation.<n>The key to our framework is a Fusion Block that facilitates bidirectional information exchange between video and audio diffusion models.
arXiv Detail & Related papers (2024-12-19T18:57:21Z) - YingSound: Video-Guided Sound Effects Generation with Multi-modal Chain-of-Thought Controls [10.429203168607147]
YingSound is a foundation model designed for video-guided sound generation.<n>It supports high-quality audio generation in few-shot settings.<n>We show that YingSound effectively generates high-quality synchronized sounds through automated evaluations and human studies.
arXiv Detail & Related papers (2024-12-12T10:55:57Z) - AV-Odyssey Bench: Can Your Multimodal LLMs Really Understand Audio-Visual Information? [65.49972312524724]
multimodal large language models (MLLMs) have expanded their capabilities to include vision and audio modalities.<n>Our proposed DeafTest reveals that MLLMs often struggle with simple tasks humans find trivial.<n>We introduce AV-Odyssey Bench, a comprehensive audio-visual benchmark designed to assess whether those MLLMs can truly understand the audio-visual information.
arXiv Detail & Related papers (2024-12-03T17:41:23Z) - Draw an Audio: Leveraging Multi-Instruction for Video-to-Audio Synthesis [28.172213291270868]
Foley is a term commonly used in filmmaking, referring to the addition of daily sound effects to silent films or videos to enhance the auditory experience.
Video-to-Audio (V2A) presents inherent challenges related to audio-visual synchronization.
We construct a controllable video-to-audio model, termed Draw an Audio, which supports multiple input instructions through drawn masks and loudness signals.
arXiv Detail & Related papers (2024-09-10T01:07:20Z) - Diverse and Aligned Audio-to-Video Generation via Text-to-Video Model
Adaptation [89.96013329530484]
We consider the task of generating diverse and realistic videos guided by natural audio samples from a wide variety of semantic classes.
We utilize an existing text-conditioned video generation model and a pre-trained audio encoder model.
We validate our method extensively on three datasets demonstrating significant semantic diversity of audio-video samples.
arXiv Detail & Related papers (2023-09-28T13:26:26Z) - Discovering Sounding Objects by Audio Queries for Audio Visual
Segmentation [36.50512269898893]
To distinguish the sounding objects from silent ones, audio-visual semantic correspondence and temporal interaction are required.
We propose an Audio-Queried Transformer architecture, AQFormer, where we define a set of object queries conditioned on audio information.
Our method achieves state-of-the-art performances, especially 7.1% M_J and 7.6% M_F gains on the MS3 setting.
arXiv Detail & Related papers (2023-09-18T05:58:06Z) - Leveraging Foundation models for Unsupervised Audio-Visual Segmentation [49.94366155560371]
Audio-Visual (AVS) aims to precisely outline audible objects in a visual scene at the pixel level.
Existing AVS methods require fine-grained annotations of audio-mask pairs in supervised learning fashion.
We introduce unsupervised audio-visual segmentation with no need for task-specific data annotations and model training.
arXiv Detail & Related papers (2023-09-13T05:05:47Z) - Improving Audio-Visual Segmentation with Bidirectional Generation [40.78395709407226]
We introduce a bidirectional generation framework for audio-visual segmentation.
This framework establishes robust correlations between an object's visual characteristics and its associated sound.
We also introduce an implicit volumetric motion estimation module to handle temporal dynamics.
arXiv Detail & Related papers (2023-08-16T11:20:23Z) - Fine-grained Audible Video Description [61.81122862375985]
We construct the first fine-grained audible video description benchmark (FAVDBench)
For each video clip, we first provide a one-sentence summary of the video, followed by 4-6 sentences describing the visual details and 1-2 audio-related descriptions at the end.
We demonstrate that employing fine-grained video descriptions can create more intricate videos than using captions.
arXiv Detail & Related papers (2023-03-27T22:03:48Z) - Self-supervised Contrastive Learning for Audio-Visual Action Recognition [7.188231323934023]
The underlying correlation between audio and visual modalities can be utilized to learn supervised information for unlabeled videos.
We propose an end-to-end self-supervised framework named Audio-Visual Contrastive Learning (A), to learn discriminative audio-visual representations for action recognition.
arXiv Detail & Related papers (2022-04-28T10:01:36Z) - AudioVisual Video Summarization [103.47766795086206]
In video summarization, existing approaches just exploit the visual information while neglecting the audio information.
We propose to jointly exploit the audio and visual information for the video summarization task, and develop an AudioVisual Recurrent Network (AVRN) to achieve this.
arXiv Detail & Related papers (2021-05-17T08:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.