論文の概要: Sequential Attention-based Sampling for Histopathological Analysis
- arxiv url: http://arxiv.org/abs/2507.05077v2
- Date: Wed, 09 Jul 2025 01:48:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 13:22:10.07016
- Title: Sequential Attention-based Sampling for Histopathological Analysis
- Title(参考訳): シークエンシャルアテンションベースサンプリングによる病理組織学的解析
- Authors: Tarun G, Naman Malpani, Gugan Thoppe, Sridharan Devarajan,
- Abstract要約: SASHAは病理像の効率的な解析のための深層強化学習手法である。
軽量な階層的、注目に基づくマルチインスタンス学習(MIL)モデルで情報機能を学ぶ。
SASHAは,WSIを高精細度で解析する最先端の手法と一致し,計算コストとメモリコストのごく一部で一致していることを示す。
- 参考スコア(独自算出の注目度): 2.3999111269325266
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks are increasingly applied for automated histopathology. Yet, whole-slide images (WSIs) are often acquired at gigapixel sizes, rendering it computationally infeasible to analyze them entirely at high resolution. Diagnostic labels are largely available only at the slide-level, because expert annotation of images at a finer (patch) level is both laborious and expensive. Moreover, regions with diagnostic information typically occupy only a small fraction of the WSI, making it inefficient to examine the entire slide at full resolution. Here, we propose SASHA -- {\it S}equential {\it A}ttention-based {\it S}ampling for {\it H}istopathological {\it A}nalysis -- a deep reinforcement learning approach for efficient analysis of histopathological images. First, SASHA learns informative features with a lightweight hierarchical, attention-based multiple instance learning (MIL) model. Second, SASHA samples intelligently and zooms selectively into a small fraction (10-20\%) of high-resolution patches, to achieve reliable diagnosis. We show that SASHA matches state-of-the-art methods that analyze the WSI fully at high-resolution, albeit at a fraction of their computational and memory costs. In addition, it significantly outperforms competing, sparse sampling methods. We propose SASHA as an intelligent sampling model for medical imaging challenges that involve automated diagnosis with exceptionally large images containing sparsely informative features.
- Abstract(参考訳): ディープニューラルネットワークは、自動化された病理組織学にますます応用されている。
しかし、全スライディング画像(WSI)は、しばしばギガピクセルサイズで取得されるため、完全に高解像度で解析することは不可能である。
診断ラベルは主にスライドレベルでのみ利用可能であり、画像のより細かい(パッチ)レベルの専門家アノテーションは手間と費用がかかるためである。
さらに、診断情報を持つ領域は、通常、WSIのごく一部しか占めておらず、完全な解像度でスライド全体を調べるのが効率的ではない。
本稿では,SASHA -- {\it S}equential {\it A}ttention-based {\it S}ampling for {\it H}istopathological {\it A}nalysis を提案する。
まず、SASHAは、軽量な階層的、注目に基づくマルチインスタンス学習(MIL)モデルで情報的特徴を学習する。
第2に、SASHAは知的にサンプリングし、高解像度のパッチのごく一部(10-20\%)に選択的にズームし、信頼性の高い診断を行う。
SASHAは,WSIを高精細度で解析する最先端の手法と一致し,計算コストとメモリコストのごく一部で一致していることを示す。
さらに、競合するスパースサンプリング手法よりも大幅に優れています。
SASHA は医用画像診断のためのインテリジェントサンプリングモデルとして提案されている。
関連論文リスト
- MIL vs. Aggregation: Evaluating Patient-Level Survival Prediction Strategies Using Graph-Based Learning [52.231128973251124]
我々は,WSIおよび患者レベルでの生存を予測するための様々な戦略を比較した。
前者はそれぞれのWSIを独立したサンプルとして扱い、他の作業で採用された戦略を模倣します。
後者は、複数のWSIの予測を集約するか、最も関連性の高いスライドを自動的に識別するメソッドを含む。
論文 参考訳(メタデータ) (2025-03-29T11:14:02Z) - From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis [81.19923502845441]
我々はWSIグラフ表現を構成するグラフベースのフレームワークを開発する。
任意のパッチではなく生物学的境界に従う組織表現(ノード)を構築します。
本手法の最終段階として,グラフアテンションネットワークを用いて診断課題を解決する。
論文 参考訳(メタデータ) (2025-03-14T20:15:04Z) - PATHS: A Hierarchical Transformer for Efficient Whole Slide Image Analysis [9.862551438475666]
計算病理学におけるスライドレベルタスクにおける階層的弱教師付き表現学習のための新しいトップダウン手法を提案する。
PATHSは、人間の病理医がスライドを検査し、各倍率レベルでパッチを診断に関連する小さなサブセットにフィルタリングする、クロスマグニフィケーションの方法にインスパイアされている。
PATHSをThe Cancer Genome Atlas(TCGA)の5つのデータセットに適用し、スライドレベルの予測タスクにおいて優れたパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-11-27T11:03:38Z) - Clustered Patch Embeddings for Permutation-Invariant Classification of Whole Slide Images [2.6733991338938026]
Whole Slide Imaging (WSI)は、デジタル病理学の基礎であり、診断と研究に不可欠な詳細な洞察を提供する。
しかし、WSIのギガピクセルサイズは計算上の大きな課題を課し、実用性を制限している。
我々の新しいアプローチは、様々なエンコーダをインテリジェントなデータ還元に活用し、WSIの堅牢で置換不変な表現を保証するために異なる分類モデルを採用することで、これらの課題に対処する。
論文 参考訳(メタデータ) (2024-11-13T11:25:05Z) - Efficient Whole Slide Image Classification through Fisher Vector Representation [2.4472081831862655]
本稿では,最も情報性の高いパッチの識別と検証を自動化し,WSI分類の新しい手法を提案する。
提案手法は2段階からなる。まず,その病理学的意義に基づいて,WSIから少数のパッチのみを抽出し,次いで,これらのパッチから抽出した特徴を表現するためにFisherベクトルを用いる。
このアプローチは、WSI表現内の主要な病理的特徴をアクセントするだけでなく、計算オーバーヘッドを大幅に減らし、プロセスをより効率的かつスケーラブルにする。
論文 参考訳(メタデータ) (2024-11-13T11:24:12Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
様々な計測アンサンプパターンと画像解像度に頑健な統合MRI再構成モデルを提案する。
我々のモデルは、拡散法よりも600$times$高速な推論で、最先端CNN(End-to-End VarNet)の4dBでSSIMを11%改善し、PSNRを4dB改善する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - A Short Survey on Set-Based Aggregation Techniques for Single-Vector WSI Representation in Digital Pathology [0.0]
デジタル病理学は、スライド画像全体(WSI)としての組織サンプルのデジタル化、保存、分析を可能にすることによって、病理学の分野に革命をもたらす
WSIは、組織サンプルの複雑な詳細をキャプチャするギガピクセルファイルであり、診断と研究目的のための豊富な情報ソースを提供する。
その巨大さのため、これらの画像を1つのコンパクトベクトルとして表現することは、多くの計算病理学的タスクに不可欠である。
論文 参考訳(メタデータ) (2024-09-06T20:56:25Z) - SPLICE -- Streamlining Digital Pathology Image Processing [0.7852714805965528]
画像分類・問合せのための教師なしパッチアルゴリズムSPLICE(Sequential Patching Lattice for Image Classification and Enquiry)を提案する。
SPLICEは、病理組織学的WSIをコンパクトな代表パッチセットに凝縮し、冗長性を最小化しながらWSIの"コラージュ"を形成する。
教師なしの方法として、SPLICEは組織像の保存要求を50%削減する。
論文 参考訳(メタデータ) (2024-04-26T21:30:36Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
我々は、全スライド画像のギガピクセルスケールの自己スーパービジョンのためのSlide Pre-trained Transformer (SPT)を提案する。
バイオメディカル・マイクロスコープ・データセットを用いて,5つの診断課題におけるSPT視覚表現のベンチマークを行った。
論文 参考訳(メタデータ) (2024-02-09T05:05:28Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
我々は、注意に基づくMILをトレーニングし、データセット内の各画像に対する信頼度を算出し、専門家のアノテーションに対して最も不確実なWSIを選択する。
新たな注意誘導損失により、各クラスにアノテートされた領域がほとんどない、トレーニングされたモデルの精度が向上する。
将来的には、病理組織学における癌分類の臨床的に関連する文脈において、MILモデルのトレーニングに重要な貢献をする可能性がある。
論文 参考訳(メタデータ) (2023-03-02T15:18:58Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。