EmbodieDreamer: Advancing Real2Sim2Real Transfer for Policy Training via Embodied World Modeling
- URL: http://arxiv.org/abs/2507.05198v1
- Date: Mon, 07 Jul 2025 16:58:17 GMT
- Title: EmbodieDreamer: Advancing Real2Sim2Real Transfer for Policy Training via Embodied World Modeling
- Authors: Boyuan Wang, Xinpan Meng, Xiaofeng Wang, Zheng Zhu, Angen Ye, Yang Wang, Zhiqin Yang, Chaojun Ni, Guan Huang, Xingang Wang,
- Abstract summary: EmbodieDreamer is a novel framework that reduces the Real2Sim2Real gap from both the physics and appearance perspectives.<n>Specifically, we propose PhysAligner, a differentiable physics module designed to reduce the Real2Sim physical gap.<n>In addition, we introduce VisAligner, which incorporates a conditional video diffusion model to bridge the Sim2Real appearance gap.
- Score: 30.706647962741826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of Embodied AI has led to an increasing demand for large-scale, high-quality real-world data. However, collecting such embodied data remains costly and inefficient. As a result, simulation environments have become a crucial surrogate for training robot policies. Yet, the significant Real2Sim2Real gap remains a critical bottleneck, particularly in terms of physical dynamics and visual appearance. To address this challenge, we propose EmbodieDreamer, a novel framework that reduces the Real2Sim2Real gap from both the physics and appearance perspectives. Specifically, we propose PhysAligner, a differentiable physics module designed to reduce the Real2Sim physical gap. It jointly optimizes robot-specific parameters such as control gains and friction coefficients to better align simulated dynamics with real-world observations. In addition, we introduce VisAligner, which incorporates a conditional video diffusion model to bridge the Sim2Real appearance gap by translating low-fidelity simulated renderings into photorealistic videos conditioned on simulation states, enabling high-fidelity visual transfer. Extensive experiments validate the effectiveness of EmbodieDreamer. The proposed PhysAligner reduces physical parameter estimation error by 3.74% compared to simulated annealing methods while improving optimization speed by 89.91\%. Moreover, training robot policies in the generated photorealistic environment leads to a 29.17% improvement in the average task success rate across real-world tasks after reinforcement learning. Code, model and data will be publicly available.
Related papers
- Hybrid Neural-MPM for Interactive Fluid Simulations in Real-Time [57.30651532625017]
We present a novel hybrid method that integrates numerical simulation, neural physics, and generative control.<n>Our system demonstrates robust performance across diverse 2D/3D scenarios, material types, and obstacle interactions.<n>We promise to release both models and data upon acceptance.
arXiv Detail & Related papers (2025-05-25T01:27:18Z) - Unreal Robotics Lab: A High-Fidelity Robotics Simulator with Advanced Physics and Rendering [4.760567755149477]
This paper presents a novel simulation framework that integrates the Unreal Engine's advanced rendering capabilities with MuJoCo's high-precision physics simulation.<n>Our approach enables realistic robotic perception while maintaining accurate physical interactions.<n>We benchmark visual navigation and SLAM methods within our framework, demonstrating its utility for testing real-world robustness in controlled yet diverse scenarios.
arXiv Detail & Related papers (2025-04-19T01:54:45Z) - Vid2Sim: Realistic and Interactive Simulation from Video for Urban Navigation [62.5805866419814]
Vid2Sim is a novel framework that bridges the sim2real gap through a scalable and cost-efficient real2sim pipeline for neural 3D scene reconstruction and simulation.<n>Experiments demonstrate that Vid2Sim significantly improves the performance of urban navigation in the digital twins and real world by 31.2% and 68.3% in success rate.
arXiv Detail & Related papers (2025-01-12T03:01:15Z) - Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications [23.94013806312391]
We propose a novel approach that dynamically adjusts simulation environment parameters online using in-context learning.<n>We validate our approach across two tasks: object scooping and table air hockey.<n>Our approach delivers efficient and smooth system identification, advancing the deployment of robots in dynamic real-world scenarios.
arXiv Detail & Related papers (2024-10-27T07:13:38Z) - CARLA2Real: a tool for reducing the sim2real gap in CARLA simulator [2.8978140690127328]
We employ a state-of-the-art approach to enhance the photorealism of simulated data, aligning them with the visual characteristics of real-world datasets.
Based on this, we developed CARLA2Real, an easy-to-use, publicly available tool (plug-in) for the widely used and open-source CARLA simulator.
This tool enhances the output of CARLA in near real-time, achieving a frame rate of 13 FPS, translating it to the visual style and realism of real-world datasets.
arXiv Detail & Related papers (2024-10-23T19:33:30Z) - DrEureka: Language Model Guided Sim-To-Real Transfer [64.14314476811806]
Transferring policies learned in simulation to the real world is a promising strategy for acquiring robot skills at scale.
In this paper, we investigate using Large Language Models (LLMs) to automate and accelerate sim-to-real design.
Our approach is capable of solving novel robot tasks, such as quadruped balancing and walking atop a yoga ball.
arXiv Detail & Related papers (2024-06-04T04:53:05Z) - Bridging the Sim-to-Real Gap with Bayesian Inference [53.61496586090384]
We present SIM-FSVGD for learning robot dynamics from data.
We use low-fidelity physical priors to regularize the training of neural network models.
We demonstrate the effectiveness of SIM-FSVGD in bridging the sim-to-real gap on a high-performance RC racecar system.
arXiv Detail & Related papers (2024-03-25T11:29:32Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification.
Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy.
We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones.
arXiv Detail & Related papers (2023-03-16T18:49:05Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.