CARLA2Real: a tool for reducing the sim2real gap in CARLA simulator
- URL: http://arxiv.org/abs/2410.18238v3
- Date: Tue, 19 Nov 2024 15:06:20 GMT
- Title: CARLA2Real: a tool for reducing the sim2real gap in CARLA simulator
- Authors: Stefanos Pasios, Nikos Nikolaidis,
- Abstract summary: We employ a state-of-the-art approach to enhance the photorealism of simulated data, aligning them with the visual characteristics of real-world datasets.
Based on this, we developed CARLA2Real, an easy-to-use, publicly available tool (plug-in) for the widely used and open-source CARLA simulator.
This tool enhances the output of CARLA in near real-time, achieving a frame rate of 13 FPS, translating it to the visual style and realism of real-world datasets.
- Score: 2.8978140690127328
- License:
- Abstract: Simulators are indispensable for research in autonomous systems such as self-driving cars, autonomous robots and drones. Despite significant progress in various simulation aspects, such as graphical realism, an evident gap persists between the virtual and real-world environments. Since the ultimate goal is to deploy the autonomous systems in the real world, closing the sim2real gap is of utmost importance. In this paper, we employ a state-of-the-art approach to enhance the photorealism of simulated data, aligning them with the visual characteristics of real-world datasets. Based on this, we developed CARLA2Real, an easy-to-use, publicly available tool (plug-in) for the widely used and open-source CARLA simulator. This tool enhances the output of CARLA in near real-time, achieving a frame rate of 13 FPS, translating it to the visual style and realism of real-world datasets such as Cityscapes, KITTI, and Mapillary Vistas. By employing the proposed tool, we generated synthetic datasets from both the simulator and the enhancement model outputs, including their corresponding ground truth annotations for tasks related to autonomous driving. Then, we performed a number of experiments to evaluate the impact of the proposed approach on feature extraction and semantic segmentation methods when trained on the enhanced synthetic data. The results demonstrate that the sim2real gap is significant and can indeed be reduced by the introduced approach.
Related papers
- Learning autonomous driving from aerial imagery [67.06858775696453]
Photogrammetric simulators allow the synthesis of novel views through the transformation of pre-generated assets into novel views.
We use a Neural Radiance Field (NeRF) as an intermediate representation to synthesize novel views from the point of view of a ground vehicle.
arXiv Detail & Related papers (2024-10-18T05:09:07Z) - Exploring Generative AI for Sim2Real in Driving Data Synthesis [6.769182994217369]
Driving simulators offer a solution by automatically generating various driving scenarios with corresponding annotations, but the simulation-to-reality (Sim2Real) domain gap remains a challenge.
This paper applied three different generative AI methods to leverage semantic label maps from a driving simulator as a bridge for the creation of realistic datasets.
Experiments show that although GAN-based methods are adept at generating high-quality images when provided with manually annotated labels, ControlNet produces synthetic datasets with fewer artefacts and more structural fidelity when using simulator-generated labels.
arXiv Detail & Related papers (2024-04-14T01:23:19Z) - Are NeRFs ready for autonomous driving? Towards closing the real-to-simulation gap [6.393953433174051]
We propose a novel perspective for addressing the real-to-simulated data gap.
We conduct the first large-scale investigation into the real-to-simulated data gap in an autonomous driving setting.
Our results show notable improvements in model robustness to simulated data, even improving real-world performance in some cases.
arXiv Detail & Related papers (2024-03-24T11:09:41Z) - Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks [47.07188762367792]
We present ARSim, a framework designed to enhance real multi-view image data with 3D synthetic objects of interest.
We construct a simplified virtual scene using real data and strategically place 3D synthetic assets within it.
The resulting augmented multi-view consistent dataset is used to train a multi-camera perception network for autonomous vehicles.
arXiv Detail & Related papers (2024-03-22T17:49:11Z) - Learning to navigate efficiently and precisely in real environments [14.52507964172957]
Embodied AI literature focuses on end-to-end agents trained in simulators like Habitat or AI-Thor.
In this work we explore end-to-end training of agents in simulation in settings which minimize the sim2real gap.
arXiv Detail & Related papers (2024-01-25T17:50:05Z) - Sim2real Transfer Learning for Point Cloud Segmentation: An Industrial
Application Case on Autonomous Disassembly [55.41644538483948]
We present an industrial application case that uses sim2real transfer learning for point cloud data.
We provide insights on how to generate and process synthetic point cloud data.
A novel patch-based attention network is proposed additionally to tackle this problem.
arXiv Detail & Related papers (2023-01-12T14:00:37Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
We present Sim2Seg, a re-imagining of RCAN that crosses the visual reality gap for off-road autonomous driving.
This is done by learning to translate randomized simulation images into simulated segmentation and depth maps.
This allows us to train an end-to-end RL policy in simulation, and directly deploy in the real-world.
arXiv Detail & Related papers (2022-10-25T17:50:36Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
We focus on the use of labels in the synthetic domain alone.
Our approach introduces both a way to learn neural-invariant representations and a theoretically inspired view on how to sample the data from the simulator.
We showcase our approach on the bird's-eye-view vehicle segmentation task with multi-sensor data.
arXiv Detail & Related papers (2021-11-15T18:37:43Z) - Point Cloud Based Reinforcement Learning for Sim-to-Real and Partial
Observability in Visual Navigation [62.22058066456076]
Reinforcement Learning (RL) represents powerful tools to solve complex robotic tasks.
RL does not work directly in the real-world, which is known as the sim-to-real transfer problem.
We propose a method that learns on an observation space constructed by point clouds and environment randomization.
arXiv Detail & Related papers (2020-07-27T17:46:59Z) - Simulation-based reinforcement learning for real-world autonomous driving [9.773015744446067]
We use reinforcement learning in simulation to obtain a driving system controlling a full-size real-world vehicle.
The driving policy takes RGB images from a single camera and their semantic segmentation as input.
We use mostly synthetic data, with labelled real-world data appearing only in the training of the segmentation network.
arXiv Detail & Related papers (2019-11-29T00:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.