Rethinking Over-Smoothing in Graph Neural Networks: A Perspective from Anderson Localization
- URL: http://arxiv.org/abs/2507.05263v1
- Date: Fri, 20 Jun 2025 18:54:10 GMT
- Title: Rethinking Over-Smoothing in Graph Neural Networks: A Perspective from Anderson Localization
- Authors: Kaichen Ouyang,
- Abstract summary: Graph Neural Networks (GNNs) have shown great potential in graph data analysis due to their powerful representation capabilities.<n>As the network depth increases, the issue of over-smoothing becomes more severe, causing node representations to lose their distinctiveness.<n>This paper analyzes the mechanism of over-smoothing through the analogy to Anderson localization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have shown great potential in graph data analysis due to their powerful representation capabilities. However, as the network depth increases, the issue of over-smoothing becomes more severe, causing node representations to lose their distinctiveness. This paper analyzes the mechanism of over-smoothing through the analogy to Anderson localization and introduces participation degree as a metric to quantify this phenomenon. Specifically, as the depth of the GNN increases, node features homogenize after multiple layers of message passing, leading to a loss of distinctiveness, similar to the behavior of vibration modes in disordered systems. In this context, over-smoothing in GNNs can be understood as the expansion of low-frequency modes (increased participation degree) and the localization of high-frequency modes (decreased participation degree). Based on this, we systematically reviewed the potential connection between the Anderson localization behavior in disordered systems and the over-smoothing behavior in Graph Neural Networks. A theoretical analysis was conducted, and we proposed the potential of alleviating over-smoothing by reducing the disorder in information propagation.
Related papers
- Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - A Neural Collapse Perspective on Feature Evolution in Graph Neural
Networks [44.31777384413466]
Graph neural networks (GNNs) have become increasingly popular for classification tasks on graph-structured data.
In this paper, we focus on node-wise classification and explore the feature evolution through the lens of the "Neural Collapse" phenomenon.
We show that even an "optimistic" mathematical model requires that the graphs obey a strict structural condition in order to possess a minimizer with exact collapse.
arXiv Detail & Related papers (2023-07-04T23:03:21Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
We study the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold.
We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold.
arXiv Detail & Related papers (2023-05-29T08:27:17Z) - Demystifying Oversmoothing in Attention-Based Graph Neural Networks [23.853636836842604]
Oversmoothing in Graph Neural Networks (GNNs) refers to the phenomenon where increasing network depth leads to homogeneous node representations.
Previous work has established that Graph Convolutional Networks (GCNs) exponentially lose expressive power.
It remains controversial whether the graph attention mechanism can mitigate oversmoothing.
arXiv Detail & Related papers (2023-05-25T14:31:59Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - A Non-Asymptotic Analysis of Oversmoothing in Graph Neural Networks [33.35609077417775]
We characterize the mechanism behind the phenomenon via a non-asymptotic analysis.
We show that oversmoothing happens once the mixing effect starts to dominate the denoising effect.
Our results suggest that while PPR mitigates oversmoothing at deeper layers, PPR-based architectures still achieve their best performance at a shallow depth.
arXiv Detail & Related papers (2022-12-21T00:33:59Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - On the Stability of Graph Convolutional Neural Networks under Edge
Rewiring [22.58110328955473]
Graph neural networks are experiencing a surge of popularity within the machine learning community.
Despite this, their stability, i.e., their robustness to small perturbations in the input, is not yet well understood.
We develop an interpretable upper bound elucidating that graph neural networks are stable to rewiring between high degree nodes.
arXiv Detail & Related papers (2020-10-26T17:37:58Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.