YOLO-APD: Enhancing YOLOv8 for Robust Pedestrian Detection on Complex Road Geometries
- URL: http://arxiv.org/abs/2507.05376v1
- Date: Mon, 07 Jul 2025 18:03:40 GMT
- Title: YOLO-APD: Enhancing YOLOv8 for Robust Pedestrian Detection on Complex Road Geometries
- Authors: Aquino Joctum, John Kandiri,
- Abstract summary: This paper introduces YOLO-APD, a novel deep learning architecture enhancing the YOLOv8 framework specifically for this challenge.<n>YOLO-APD achieves state-of-the-art detection accuracy, reaching 77.7% mAP@0.5:0.95 and exceptional pedestrian recall exceeding 96%.<n>It maintains real-time processing capabilities at 100 FPS, showcasing a superior balance between accuracy and efficiency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous vehicle perception systems require robust pedestrian detection, particularly on geometrically complex roadways like Type-S curved surfaces, where standard RGB camera-based methods face limitations. This paper introduces YOLO-APD, a novel deep learning architecture enhancing the YOLOv8 framework specifically for this challenge. YOLO-APD integrates several key architectural modifications: a parameter-free SimAM attention mechanism, computationally efficient C3Ghost modules, a novel SimSPPF module for enhanced multi-scale feature pooling, the Mish activation function for improved optimization, and an Intelligent Gather & Distribute (IGD) module for superior feature fusion in the network's neck. The concept of leveraging vehicle steering dynamics for adaptive region-of-interest processing is also presented. Comprehensive evaluations on a custom CARLA dataset simulating complex scenarios demonstrate that YOLO-APD achieves state-of-the-art detection accuracy, reaching 77.7% mAP@0.5:0.95 and exceptional pedestrian recall exceeding 96%, significantly outperforming baseline models, including YOLOv8. Furthermore, it maintains real-time processing capabilities at 100 FPS, showcasing a superior balance between accuracy and efficiency. Ablation studies validate the synergistic contribution of each integrated component. Evaluation on the KITTI dataset confirms the architecture's potential while highlighting the need for domain adaptation. This research advances the development of highly accurate, efficient, and adaptable perception systems based on cost-effective sensors, contributing to enhanced safety and reliability for autonomous navigation in challenging, less-structured driving environments.
Related papers
- YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception [44.76134548023668]
We propose YOLOv13, an accurate and lightweight object detector.<n>We propose a Hypergraph-based Adaptive Correlation Enhancement (HyperACE) mechanism.<n>We also propose a Full-Pipeline Aggregation-and-Distribution (FullPAD) paradigm.
arXiv Detail & Related papers (2025-06-21T15:15:03Z) - Enhancing Traffic Sign Recognition On The Performance Based On Yolov8 [0.0]
This thesis presents an enhanced YOLOv8-based detection system that integrates advanced data augmentation techniques.<n>Experiments conducted on datasets including GTSRB, TT100K, and GTSDB demonstrate marked improvements in detection accuracy, robustness under adverse conditions, and real-time inference on edge devices.
arXiv Detail & Related papers (2025-04-02T07:28:05Z) - YOLO-LLTS: Real-Time Low-Light Traffic Sign Detection via Prior-Guided Enhancement and Multi-Branch Feature Interaction [45.79993863157494]
YOLO-LLTS is an end-to-end real-time traffic sign detection algorithm specifically designed for low-light environments.<n>YOLO-LLTS introduces three main contributions: the High-Resolution Feature Map for Small Object Detection (HRFM-SOD), the Multi-branch Feature Interaction Attention (MFIA) and the Prior-Guided Feature Enhancement Module (PGFE)<n>Experiments show that YOLO-LLTS achieves state-of-the-art performance, outperforming previous best methods by 2.7% mAP50 and 1.6% mAP50:95 on TT100K-night.
arXiv Detail & Related papers (2025-03-18T04:28:05Z) - A Light Perspective for 3D Object Detection [46.23578780480946]
This paper introduces a novel approach that incorporates cutting-edge Deep Learning techniques into the feature extraction process.<n>Our model, NextBEV, surpasses established feature extractors like ResNet50 and MobileNetV3.<n>By fusing these lightweight proposals, we have enhanced the accuracy of the VoxelNet-based model by 2.93% and improved the F1-score of the PointPillar-based model by approximately 20%.
arXiv Detail & Related papers (2025-03-10T10:03:23Z) - YOLOv12: A Breakdown of the Key Architectural Features [0.5639904484784127]
YOLOv12 is a significant advancement in single-stage, real-time object detection.<n>It incorporates an optimised backbone (R-ELAN), 7x7 separable convolutions, and FlashAttention-driven area-based attention.<n>It offers scalable solutions for both latency-sensitive and high-accuracy applications.
arXiv Detail & Related papers (2025-02-20T17:08:43Z) - Fast-COS: A Fast One-Stage Object Detector Based on Reparameterized Attention Vision Transformer for Autonomous Driving [3.617580194719686]
This paper introduces Fast-COS, a novel single-stage object detection framework crafted specifically for driving scenes.<n> RAViT achieves 81.4% Top-1 accuracy on the ImageNet-1K dataset.<n>It surpasses leading models in efficiency, delivering up to 75.9% faster GPU inference and 1.38 higher throughput on edge devices.
arXiv Detail & Related papers (2025-02-11T09:54:09Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - What is YOLOv9: An In-Depth Exploration of the Internal Features of the Next-Generation Object Detector [0.0]
This study focuses on the YOLOv9 object detection model, focusing on its architectural innovations, training methodologies, and performance improvements.
Key advancements, such as the Generalized Efficient Layer Aggregation Network GELAN and Programmable Gradient Information PGI, significantly enhance feature extraction and gradient flow.
This paper provides the first in depth exploration of YOLOv9s internal features and their real world applicability, establishing it as a state of the art solution for real time object detection.
arXiv Detail & Related papers (2024-09-12T07:46:58Z) - YOLO9tr: A Lightweight Model for Pavement Damage Detection Utilizing a Generalized Efficient Layer Aggregation Network and Attention Mechanism [0.0]
This paper proposes YOLO9tr, a novel lightweight object detection model for pavement damage detection.
YOLO9tr is based on the YOLOv9 architecture, incorporating a partial attention block that enhances feature extraction and attention mechanisms.
The model achieves a high frame rate of up to 136 FPS, making it suitable for real-time applications such as video surveillance and automated inspection systems.
arXiv Detail & Related papers (2024-06-17T06:31:43Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
We present YOLO-S, a simple, fast and efficient network for small target detection.
YOLO-S exploits a small feature extractor based on Darknet20, as well as skip connection, via both bypass and concatenation.
YOLO-S has an 87% decrease of parameter size and almost one half FLOPs of YOLOv3, making practical the deployment for low-power industrial applications.
arXiv Detail & Related papers (2022-04-05T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.