EmissionNet: Air Quality Pollution Forecasting for Agriculture
- URL: http://arxiv.org/abs/2507.05416v3
- Date: Fri, 01 Aug 2025 04:55:36 GMT
- Title: EmissionNet: Air Quality Pollution Forecasting for Agriculture
- Authors: Prady Saligram, Tanvir Bhathal,
- Abstract summary: Air pollution from agricultural emissions is a significant yet often overlooked contributor to environmental and public health challenges.<n>Traditional air quality forecasting models rely on physics-based approaches, which struggle to capture complex, nonlinear pollutant interactions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air pollution from agricultural emissions is a significant yet often overlooked contributor to environmental and public health challenges. Traditional air quality forecasting models rely on physics-based approaches, which struggle to capture complex, nonlinear pollutant interactions. In this work, we explore forecasting N$_2$O agricultural emissions through evaluating popular architectures, and proposing two novel deep learning architectures, EmissionNet (ENV) and EmissionNet-Transformer (ENT). These models leverage convolutional and transformer-based architectures to extract spatial-temporal dependencies from high-resolution emissions data
Related papers
- MVAR: MultiVariate AutoRegressive Air Pollutants Forecasting Model [18.785110680719235]
Existing studies predominantly focus on single-pollutant forecasting, neglecting the interactions among different pollutants and their diverse spatial responses.<n>We propose MultiVariate AutoRegressive air pollutants forecasting model, which reduces the dependency on long-time-window inputs.<n>We construct a comprehensive dataset covering 6 major pollutants across 75 cities in North China from 2018 to 2023, including ERA5 reanalysis data and FuXi-2.0 forecast data.
arXiv Detail & Related papers (2025-07-16T08:30:41Z) - Air Quality Prediction with A Meteorology-Guided Modality-Decoupled Spatio-Temporal Network [47.699409089023696]
Air quality prediction plays a crucial role in public health and environmental protection.<n>Existing works underestimate the critical role atmospheric conditions in air quality prediction.<n> MDSTNet is an encoder framework explicitly that captures atmosphere-pollution dependencies for prediction.<n>ChinaAirNet is the first dataset combining air quality records with multi-pressure-level meteorological observations.
arXiv Detail & Related papers (2025-04-14T09:18:11Z) - Offline Meteorology-Pollution Coupling Global Air Pollution Forecasting Model with Bilinear Pooling [5.236306661644172]
Traditional physics-based models forecast global air pollution by coupling meteorology and pollution processes.<n>Existing deep learning (DL) solutions employ online coupling strategies for global air pollution forecasting.<n>This study pioneers a DL-based offline coupling framework that utilizes bilinear pooling to achieve offline coupling between meteorological fields and pollutants.
arXiv Detail & Related papers (2025-03-24T07:24:31Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
We evaluate the CO2 emissions of well-known large language models, which have an especially high carbon footprint due to their significant amount of model parameters.
We argue for the training of LLMs in a way that is responsible and sustainable by suggesting measures for reducing carbon emissions.
arXiv Detail & Related papers (2024-04-01T15:01:45Z) - Airport take-off and landing optimization through genetic algorithms [55.2480439325792]
This research addresses the crucial issue of pollution from aircraft operations, focusing on optimizing both gate allocation and runway scheduling simultaneously.
The study presents an innovative genetic algorithm-based method for minimizing pollution from fuel combustion during aircraft take-off and landing at airports.
arXiv Detail & Related papers (2024-02-29T14:53:55Z) - GeoFormer: A Vision and Sequence Transformer-based Approach for
Greenhouse Gas Monitoring [2.1647301294759624]
We introduce a compact model that combines a vision transformer module with a highly efficient time-series transformer module to predict NO2 concentrations.
We train the proposed model to predict surface-level NO2 measurements using a dataset we constructed with Sentinel-5P images of ground-level monitoring stations.
arXiv Detail & Related papers (2024-02-11T11:20:29Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Aim in Climate Change and City Pollution [0.0]
Air pollution plays a key role in the degradation of the environment as well as the health of the citizens exposed to it.
In this chapter we provide a review of the methods available to model air pollution, focusing on the application of machine-learning methods.
arXiv Detail & Related papers (2021-12-30T16:17:46Z) - Estimation of Air Pollution with Remote Sensing Data: Revealing
Greenhouse Gas Emissions from Space [1.9659095632676094]
Existing models for surface-level air pollution rely on extensive land-use datasets which are often locally restricted and temporally static.
This work proposes a deep learning approach for the prediction of ambient air pollution that only relies on remote sensing data that is globally available and frequently updated.
arXiv Detail & Related papers (2021-08-31T14:58:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.