Offline Meteorology-Pollution Coupling Global Air Pollution Forecasting Model with Bilinear Pooling
- URL: http://arxiv.org/abs/2503.18405v1
- Date: Mon, 24 Mar 2025 07:24:31 GMT
- Title: Offline Meteorology-Pollution Coupling Global Air Pollution Forecasting Model with Bilinear Pooling
- Authors: Xu Fan, Yuetan Lin, Bing Gong, Hao Li,
- Abstract summary: Traditional physics-based models forecast global air pollution by coupling meteorology and pollution processes.<n>Existing deep learning (DL) solutions employ online coupling strategies for global air pollution forecasting.<n>This study pioneers a DL-based offline coupling framework that utilizes bilinear pooling to achieve offline coupling between meteorological fields and pollutants.
- Score: 5.236306661644172
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Air pollution has become a major threat to human health, making accurate forecasting crucial for pollution control. Traditional physics-based models forecast global air pollution by coupling meteorology and pollution processes, using either online or offline methods depending on whether fully integrated with meteorological models and run simultaneously. However, the high computational demands of both methods severely limit real-time prediction efficiency. Existing deep learning (DL) solutions employ online coupling strategies for global air pollution forecasting, which finetune pollution forecasting based on pretrained atmospheric models, requiring substantial training resources. This study pioneers a DL-based offline coupling framework that utilizes bilinear pooling to achieve offline coupling between meteorological fields and pollutants. The proposed model requires only 13% of the parameters of DL-based online coupling models while achieving competitive performance. Compared with the state-of-the-art global air pollution forecasting model CAMS, our approach demonstrates superiority in 63% variables across all forecast time steps and 85% variables in predictions exceeding 48 hours. This work pioneers experimental validation of the effectiveness of meteorological fields in DL-based global air pollution forecasting, demonstrating that offline coupling meteorological fields with pollutants can achieve a 15% relative reduction in RMSE across all pollution variables. The research establishes a new paradigm for real-time global air pollution warning systems and delivers critical technical support for developing more efficient and comprehensive AI-powered global atmospheric forecasting frameworks.
Related papers
- Air Quality Prediction with A Meteorology-Guided Modality-Decoupled Spatio-Temporal Network [47.699409089023696]
Air quality prediction plays a crucial role in public health and environmental protection.
Existing works underestimate the critical role atmospheric conditions in air quality prediction.
MDSTNet is an encoder framework explicitly that captures atmosphere-pollution dependencies for prediction.
ChinaAirNet is the first dataset combining air quality records with multi-pressure-level meteorological observations.
arXiv Detail & Related papers (2025-04-14T09:18:11Z) - A HEART for the environment: Transformer-Based Spatiotemporal Modeling for Air Quality Prediction [0.0]
llull-environment is a sophisticated and scalable forecasting system for air pollution.<n>It contains an encoder-decoder convolutional neural network to forecast mean pollution levels for four key pollutants.<n>This paper investigates the augmentation of this neural network with an attention mechanism to improve predictive accuracy.
arXiv Detail & Related papers (2025-02-26T10:54:27Z) - Developing Gridded Emission Inventory from High-Resolution Satellite Object Detection for Improved Air Quality Forecasts [1.4238093681454425]
This study presents an innovative approach to creating a dynamic, AI based emission inventory system for use with the Weather Research and Forecasting model coupled with Chemistry (WRF Chem)
The system offers unprecedented temporal and spatial resolution in emission estimates, facilitating more accurate short term air quality forecasts and deeper insights into urban emission dynamics.
Future work will focus on expanding the system's capabilities to non vehicular sources and further improving detection accuracy in challenging environmental conditions.
arXiv Detail & Related papers (2024-10-14T01:32:45Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts [0.11249583407496218]
Air pollution poses a significant threat to public health and well-being, particularly in urban areas.
This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants.
arXiv Detail & Related papers (2024-05-30T10:02:53Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Air Quality Forecasting Using Machine Learning: A Global perspective
with Relevance to Low-Resource Settings [0.0]
Air pollution stands as the fourth leading cause of death globally.
This study proposes a novel machine learning approach for accurate air quality prediction using two months of air quality data.
arXiv Detail & Related papers (2024-01-09T05:52:02Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Discretized Linear Regression and Multiclass Support Vector Based Air
Pollution Forecasting Technique [0.0]
This paper proposes an Internet of Things (IoT) enabled system for monitoring and controlling air pollution in the cloud computing environment.
Experiments carried out on the air quality data in the India dataset have revealed the outstanding performance of the proposed LR-MSV method.
arXiv Detail & Related papers (2022-11-28T06:51:59Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.