論文の概要: Estimating Interventional Distributions with Uncertain Causal Graphs through Meta-Learning
- arxiv url: http://arxiv.org/abs/2507.05526v1
- Date: Mon, 07 Jul 2025 22:48:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:37.438787
- Title: Estimating Interventional Distributions with Uncertain Causal Graphs through Meta-Learning
- Title(参考訳): メタラーニングによる不確かさ因果グラフによる干渉分布の推定
- Authors: Anish Dhir, Cristiana Diaconu, Valentinian Mihai Lungu, James Requeima, Richard E. Turner, Mark van der Wilk,
- Abstract要約: 生物学から社会科学まで、科学分野では、多くの疑問がテキスト化されます。
モデル平均因果推定変換器ニューラルプロセス(MACE-TNP)を用いたメタラーニングによるエンドツーエンドモデルの構築を提案する。
我々の研究は、複雑なベイズ因果推論を近似するフレキシブルでスケーラブルなパラダイムとしてメタラーニングを確立している。
- 参考スコア(独自算出の注目度): 26.3914014514629
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In scientific domains -- from biology to the social sciences -- many questions boil down to \textit{What effect will we observe if we intervene on a particular variable?} If the causal relationships (e.g.~a causal graph) are known, it is possible to estimate the intervention distributions. In the absence of this domain knowledge, the causal structure must be discovered from the available observational data. However, observational data are often compatible with multiple causal graphs, making methods that commit to a single structure prone to overconfidence. A principled way to manage this structural uncertainty is via Bayesian inference, which averages over a posterior distribution on possible causal structures and functional mechanisms. Unfortunately, the number of causal structures grows super-exponentially with the number of nodes in the graph, making computations intractable. We propose to circumvent these challenges by using meta-learning to create an end-to-end model: the Model-Averaged Causal Estimation Transformer Neural Process (MACE-TNP). The model is trained to predict the Bayesian model-averaged interventional posterior distribution, and its end-to-end nature bypasses the need for expensive calculations. Empirically, we demonstrate that MACE-TNP outperforms strong Bayesian baselines. Our work establishes meta-learning as a flexible and scalable paradigm for approximating complex Bayesian causal inference, that can be scaled to increasingly challenging settings in the future.
- Abstract(参考訳): 生物学から社会科学まで、科学領域では、多くの疑問が‘textit{?
} 因果関係(例えば、因果関係)が分かっていれば、介入分布を推定することができる。
この領域の知識がなければ、因果構造は利用可能な観測データから発見されなければならない。
しかし、観測データはしばしば複数の因果グラフと互換性があり、単一の構造にコミットする手法は過信しがちである。
この構造的不確実性を管理するための原則的な方法はベイズ推論(英語版)である。
残念ながら、因果構造の数はグラフ内のノード数とともに指数関数的に増加し、計算が難解になる。
本稿では,メタ学習を用いて,モデル平均因果推定変換ニューラルネットワーク(MACE-TNP)のエンドツーエンドモデルを作成することにより,これらの課題を回避することを提案する。
このモデルはベイズ平均的介入後分布を予測するために訓練されており、そのエンドツーエンドの性質は高価な計算の必要性を回避している。
経験的に、MACE-TNPがベイズ基底線より優れていることを示す。
我々の研究は、メタラーニングを複雑なベイズ因果推論を近似するためのフレキシブルでスケーラブルなパラダイムとして確立しています。
関連論文リスト
- Generative Flow Networks: Theory and Applications to Structure Learning [7.6872614776094]
この論文は、ベイズの観点からの構造学習の問題を研究する。
ジェネレーティブフローネットワーク(GFlowNets)を導入
GFlowNetsは、生成をシーケンシャルな意思決定問題として扱う。
論文 参考訳(メタデータ) (2025-01-09T17:47:17Z) - Bayesian Causal Inference with Gaussian Process Networks [1.7188280334580197]
本稿では,ガウス過程ネットワークモデルにおける仮説的介入の効果のベイズ推定の問題について考察する。
本稿では,ネットワーク全体の介入の効果をシミュレートし,下流変数に対する介入の効果を伝播させることにより,GPNに対する因果推論を行う方法について述べる。
両フレームワークを既知の因果グラフのケースを超えて拡張し,マルコフ連鎖モンテカルロ法による因果構造の不確実性を取り入れた。
論文 参考訳(メタデータ) (2024-02-01T14:39:59Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。