Exact and efficient basis pursuit denoising via differential inclusions and a selection principle
- URL: http://arxiv.org/abs/2507.05562v1
- Date: Tue, 08 Jul 2025 01:07:22 GMT
- Title: Exact and efficient basis pursuit denoising via differential inclusions and a selection principle
- Authors: Gabriel P. Langlois, Jérôme Darbon,
- Abstract summary: We propose an exact and efficient algorithm for basis pursuit denoising (BPDN) using differential inclusions.<n>Our analysis naturally yields an exact algorithm numerically up to machine precision.<n> Numerical experiments confirm that our algorithm outperforms the state-of-the-art algorithms in both accuracy and efficiency.
- Score: 0.3222802562733786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Basis pursuit denoising (BPDN) is a cornerstone of compressive sensing, statistics and machine learning. While various algorithms for BPDN have been proposed, they invariably suffer from drawbacks and must either favor efficiency at the expense of accuracy or vice versa. As such, state-of-the-art algorithms remain ineffective for high-dimensional applications that require accurate solutions within a reasonable amount of computational time. In this work, we address this issue and propose an exact and efficient algorithm for BPDN using differential inclusions. Specifically, we prove that a selection principle from the theory of differential inclusions turns the dual problem of BPDN into calculating the trajectory of an \emph{integrable} projected dynamical system, that is, whose trajectory and asymptotic limit can be computed exactly. Our analysis naturally yields an exact algorithm, numerically up to machine precision, that is amenable to computing regularization paths and very fast. Numerical experiments confirm that our algorithm outperforms the state-of-the-art algorithms in both accuracy and efficiency. Moreover, we show that the global continuation of solutions (in terms of the hyperparameter and data) of the projected dynamical system yields a rigorous homotopy algorithm for BPDN, as well as a novel greedy algorithm for computing feasible solutions to basis pursuit in strongly polynomial time. Beyond this work, we expect that our results and analysis can be adapted to compute exact or approximate solutions to a broader class of polyhedral-constrained optimization problems.
Related papers
- Towards minimax optimal algorithms for Active Simple Hypothesis Testing [0.0]
We study the Active Simple Hypothesis Testing (ASHT) problem, a simpler variant of the Fixed Budget Best Arm Identification problem.<n>We provide novel game theoretic formulation of the upper bounds of the ASHT problem.<n>We propose an approximately optimal algorithm that is computationally tractable compared to prior work.
arXiv Detail & Related papers (2025-04-26T20:03:53Z) - WENDy for Nonlinear-in-Parameters ODEs [1.9573380763700712]
The Weak-form Estimation of Non-linear Dynamics (WEN) is extended to accommodate systems of ordinary differential equations that are nonlinear-ins.<n>We present results on a suite of benchmark systems to demonstrate the practical benefits of our approach.
arXiv Detail & Related papers (2025-02-13T01:40:21Z) - Efficient Convex Algorithms for Universal Kernel Learning [46.573275307034336]
An ideal set of kernels should: admit a linear parameterization (for tractability); dense in the set of all kernels (for accuracy)
Previous algorithms for optimization of kernels were limited to classification and relied on computationally complex Semidefinite Programming (SDP) algorithms.
We propose a SVD-QCQPQP algorithm which dramatically reduces the computational complexity as compared with previous SDP-based approaches.
arXiv Detail & Related papers (2023-04-15T04:57:37Z) - Accelerated First-Order Optimization under Nonlinear Constraints [61.98523595657983]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.<n>An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z) - Boosting Algorithms for Estimating Optimal Individualized Treatment
Rules [4.898659895355356]
We present nonparametric algorithms for estimating optimal individualized treatment rules.
The proposed algorithms are based on the XGBoost algorithm, which is known as one of the most powerful algorithms in the machine learning literature.
arXiv Detail & Related papers (2020-01-31T22:26:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.